Campylobacter jejuni is recognized as a leading cause of acute bacterial gastroenteritis in humans. The over-use of antimicrobials in the human population and in animal husbandry has led to an increase in antimicrobial-resistant infections, particularly with fluoroquinolones and macrolides. The aim of the present study was to provide information of the current status of antimicrobial resistance patterns in Campylobacter jejuni from poultry sources. Fifty strains were recovered from broiler slaughterhouses in Rio Grande do Sul state, Brazil, 2012. The strains were investigated for antimicrobial susceptibility against three agents (ciprofloxacin, nalidixic acid and erythromycin) by minimal inhibitory concentrations. The strains were analysed by polymerase chain reaction-restriction fragment length polymorphism for detection of the Thr-86 mutation that confers resistance to ciprofloxacin. In addition, all the strains were tested for the presence of efflux systems (cmeB gene) conferring antimicrobial resistance. The minimum inhibitory concentrations results showed that 98% of isolates were sensitive to erythromycin and most isolates were resistant to ciprofloxacin (94%) and nalidixic acid (90%). A complete correlation was observed between the minimum inhibitory concentrations and PCR-RFLP assay. Finally, the cmeB gene that is responsible for multidrug resistance was detected in 16 isolates out the 50 strains (32%).

Download full-text PDF

Source
http://dx.doi.org/10.1080/03079457.2015.1120272DOI Listing

Publication Analysis

Top Keywords

campylobacter jejuni
12
inhibitory concentrations
12
broiler slaughterhouses
8
antimicrobial resistance
8
nalidixic acid
8
cmeb gene
8
minimum inhibitory
8
resistance
5
strains
5
fluoroquinolone macrolide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!