The influence of an electric field on an isolated channel or nanopore separating two compartments filled with electrolytes produces a constant ion flux through the pore. Nucleic acids added to one compartment traverse the pore, and modulate the current in a sequence-dependent manner. While translocation is faster than detection, the α-hemolysin nanopore (α-HL) successfully senses base modifications in ssDNA immobilized within the pore. With the assistance of a processing enzyme to slow down translocation, nanopore-based DNA sequencing is now a commercially available platform. However, accurate base calling is challenging because α-HL senses a sequence, and not a single nucleotide. Osmylated DNA was recently proposed as a surrogate for nanopore-based sequencing. Osmylation is the addition of osmium tetroxide 2,2'-bipyridine (OsBp) to the C5-C6 pyrimidine double bond. The process is simple, selective for deoxythymidine (dT) over deoxycytidine (dC), unreactive towards the purines, practically 100% effective, and strikingly independent of length, sequence, and composition. Translocation of an oligodeoxynucleotide (oligo) dA10XdA9 via α-HL is relatively slow, and exhibits distinct duration as well as distinct residual current when X = dA, dT(OsBp), or dC(OsBp). The data indicate that the α-HL constriction zone/β-barrel interacts strongly with both OsBp and the base. A 23 nucleotide long oligo with four dT(OsBp) traverses 18-times slower, and the same oligo with nine (dT+dC)(OsBp) moieties traverses 84-times slower compared to dA20, suggesting an average rate of 40 or 180 μs/base, respectively. These translocation speeds are well above detection limits, may be further optimized, and clear the way for nanopore-based sequencing using osmylated DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734350 | PMC |
http://dx.doi.org/10.3762/bjnano.7.11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!