Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768690 | PMC |
http://dx.doi.org/10.7717/peerj.1664 | DOI Listing |
Integr Environ Assess Manag
January 2025
International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada.
Selenium (Se) is a naturally occurring metalloid in soils and rocks that is released by weathering processes; it is also enriched by some anthropogenic activities, including mining and agriculture. The mechanism of Se aquatic toxicity has been understood for several decades; at elevated concentrations, dietary Se can accumulate in maternal tissues of fish and birds, become deposited into their eggs, and can potentially result in impaired embryological development. North American environmental regulations have acknowledged differences in species sensitivity and variation among aquatic environments (i.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Marine Ecology Research Center, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China.
Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Mol Ecol Resour
January 2025
Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, UK.
Collagen is the most ubiquitous protein in the animal kingdom and one of the most abundant proteins on Earth. Despite having a relatively repetitive amino acid sequence motif that enables its triple helical structure, in type 1 collagen, that dominates skin and bone, there is enough variation for its increasing use for the biomolecular species identification of animal tissues processed or degraded beyond the amenability of DNA-based analyses. In recent years, this has been most commonly achieved through the technique of collagen peptide mass fingerprinting (PMF) known as ZooMS (Zooarchaeology by Mass Spectrometry), applied to the analysis of tens of thousands of samples across over one hundred studies in the past decade alone.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
January 2025
Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica.
Background: Fish venoms have been poorly characterized and the available information about their composition suggests they are uncomplicated secretions that, combined with epidermal mucus, could induce an inflammatory reaction, excruciating pain, and, in some cases, local tissue injuries.
Methods: In this study, we characterized the 24-hour histopathological effects of lionfish venom in a mouse experimental model by testing the main fractions obtained by size exclusion-HPLC. By partial proteomics analysis, we also correlated these effects with the presence of some potentially toxic venom components.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!