Introduction: Acute myeloid leukemia (AML) is a genetically heterogeneous disease at both the cytogenetic and molecular levels. In AML cells many chromosomal aberrations are observed, some of them being characteristic of a particular subtype of patients, and others being less significant. Besides chromosomal abnormalities, the leukemic cells can have a variety of mutations involving individual genes. The aim of this work was to investigate the frequencies of molecular alterations with the focus on FLT3-ITD and NPM1 mutations in AML patients of different age groups living in a southeastern region of Poland.

Material And Methods: The study group comprised 50 consecutive AML patients. We analyzed bone marrow samples by conventional cytogenetics. Cytogenetic evaluation in selected cases was complemented by the FISH technique. The internal tandem mutation in the FLT3 gene was identified using polymerase chain reaction (PCR), and the NPM1 mutation was assessed by direct nucleotide sequencing.

Results: The studies using classical cytogenetics showed chromosomal aberrations in 32 (64%) patients. In 18 cases no changes in the karyotype were found by conventional karyotyping. FLT3-ITD mutation was detected in 4 (8%) patients and mutation of NPM1 in 3 patients with AML (6%).

Conclusions: The incidence of both mutations in our study group was lower than described elsewhere. We have confirmed that FLT3-ITD occurred more commonly in older patients and it was associated with shorter overall survival. By contrast, mutation of exon 12 of the NPM1 gene seems to be a good prognostic factor in AML patients with normal karyotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754359PMC
http://dx.doi.org/10.5114/aoms.2015.49811DOI Listing

Publication Analysis

Top Keywords

aml patients
12
patients
9
acute myeloid
8
myeloid leukemia
8
chromosomal aberrations
8
study group
8
aml
6
npm1
5
mutation
5
examination flt3
4

Similar Publications

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Venetoclax plus azacitidine represents a key advance for older, unfit patients with acute myeloid leukemia (AML). The chemotherapy and venetoclax in elderly AML trial (CAVEAT) was first to combine venetoclax with intensive chemotherapy in newly diagnosed patients ≥65 years. In this final analysis, 85 patients (median age 71 years) were followed for a median of 41.

View Article and Find Full Text PDF

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Invest Radiol

January 2025

From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!