The bean fly ( spp.) is considered the most economically damaging field insect pest of common beans in Uganda. Despite the use of existing pest management approaches, reported damage has remained high. Forty-eight traditional and improved common bean varieties currently grown in farmers' fields were evaluated for resistance against bean fly. Data on bean fly incidence, severity and root damage from bean stem maggot were collected. Generalized linear mixed model (GLMM) revealed significant resistance to bean fly in the Ugandan traditional varieties. A popular resistant traditional variety and a popular susceptible commercial variety were selected from the 48 varieties and evaluated in pure and mixed stands. The incidence of bean fly infestation on both varieties in mixtures with different arrangements (systematic random versus rows), and different proportions within each of the two arrangements, was measured and analysed using GLMMs. The proportion of resistant varieties in a mixture and the arrangement type significantly decreased bean fly damage compared to pure stands, with the highest decrease in damage registered in the systematic random mixture with at least 50 % of resistant variety. The highest reduction in root damage, obvious 21 days after planting, was found in systematic random mixtures with at least 50 % of the resistant variety. Small holder farmers in East Africa and elsewhere in the world have local preferences for growing bean varieties in genetic mixtures. These mixtures can be enhanced by the use of resistant varieties in the mixtures to reduce bean fly damage on susceptible popular varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757615 | PMC |
http://dx.doi.org/10.1007/s10340-015-0678-7 | DOI Listing |
Int J Mol Sci
December 2024
Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
Expanded insect production represents a source of post-breeding residues (frass) that can potentially be used as a soil additive. These types of biofertilizers are carriers of recirculated nutrients, as well as organic matter. In the present study, we investigated whether the bean waste (BW) and pea waste (PW) in the form of crushed seeds and post-production leftovers, naturally rich in proteins, were suitable as a substrate for rearing black soldier fly (Hermetia illucens) larvae.
View Article and Find Full Text PDFParasit Vectors
December 2024
Kala-Azar Medical Research Center (KAMRC), Muzaffarpur, Bihar, India.
Background: Visceral leishmaniasis (VL), known as Kala-azar on the Indian subcontinent, is a parasitic disease caused by the flagellated protozoa Leishmania donovani and can be fatal if left untreated. The sand fly Phlebotomus argentipes is the only proven vector of VL in the Southeast Asia region, and VL control in this region has relied on the use of synthetic insecticides for indoor residual spraying (IRS). The use of DDT in VL control programmes has led to the development of resistance to this insecticide in sand flies, resulting in DDT being replaced with the insecticide alpha-cypermethrin.
View Article and Find Full Text PDFFood Chem
February 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:
The black solider fly larvae (BSFL) can efficiently convert nitrogen in organic waste into insect protein. Bacillus subtilis S4, an efficient protein-degrading bacterium from the BSFL gut, was isolated and identified to explore the mechanism of nutrient metabolism underlying BSFL nitrogen utilization. Results showed that B.
View Article and Find Full Text PDFFront Plant Sci
September 2024
International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
Bush bean ( L.) production is undermined by soil degradation and low biological nitrogen fixation (BNF) capacity. This study evaluated the effect of black soldier fly frass fertilizer (BSFFF) on bush bean growth, yield, nutrient uptake, BNF, and profitability, in comparison with commercial organic fertilizer (Phymyx, Phytomedia International Ltd.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!