Several expanded porphyrins switch between Hückel, Möbius and twisted-Hückel topologies, encoding different aromaticity and NLO properties. Since the topological switch can be induced by different external stimuli, expanded porphyrins represent a promising platform to develop molecular switches for molecular electronic devices. In order to determine the optimum conditions for efficient molecular switches from octaphyrins, we have carried out a comprehensive quantum chemical study focusing on the conformational preferences and aromaticity of [36]octaphyrins. Different external stimuli for triggering the topological switch have been considered in our work, such as protonation and redox reactions. Importantly, the structure-property relationships between the molecular conformation, the number of π-electrons and aromaticity in octaphyrins have been established by using energetic, magnetic, structural and reactivity descriptors. Remarkably, we found that the aromaticity of octaphyrins is highly dependent on the π-conjugation topology and the number of π-electrons and it can be modulated by protonation and redox reactions. A non-aromatic figure-eight conformation is strongly preferred by neutral [36]octaphyrins that switches to a Möbius aromatic conformation upon protonation. Such a change of topology involves an aromaticity switch in a single molecule and is accompanied by a drastic change in the NLO properties. In contrast, the twisted-Hückel topology remains the most stable one in the oxidized and reduced species, but the aromaticity is totally reversed upon redox reactions. Aromaticity is shown to be a key concept in expanded porphyrins, determining the electronic, magnetic and NLO properties of these macrocycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp07413d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!