Unlabelled: Bungarus multicinctus (many-banded krait) and Naja atra (Chinese cobra) are widely distributed and medically important venomous snakes in China; however, their venom proteomic profiles have not been fully compared. Here, we fractionated crude venoms and analyzed them using a combination of proteomic techniques. Three-finger toxins (3-FTx) and phospholipase A2 (PLA2) were most abundant in both species, respectively accounting for 32.6% and 66.4% of total B. multicinctus venom, and 84.3% and 12.2% of total N. atra venom. Venoms from these two species contained one common protein family and six less abundant species-specific protein families. The proteomic profiles of B. multicinctus and N. atra venoms and analysis of toxicological activity in mice suggested that 3-FTx and PLA2 are the major contributors to clinical symptoms caused by envenomation. The venoms differed in enzymatic activity, likely the result of inter-specific variation in the amount of related venom components. Antivenomics assessment revealed that a small number of venom components (3-FTxs and PLA2s in B. multicinctus, and 3-FTxs in N. atra) could not be immunocaptured completely, suggesting that we should pay attention to enhancing the immune response of these components in designing commercial antivenoms for B. multicinctus and N. atra.
Biological Significance: The proteomic profiles of venoms from two medically important snake species - B. multicinctus and N. atra - have been explored. Quantitative and qualitative differences are evident in both venoms when proteomic profiles and transcriptomic results are compared; this is a reminder that combined approaches are needed to explore the precise composition of snake venom. Two protein families (3-FTx and PLA2) of high abundance in these snake venoms are major players in the biochemical and pharmacological effects of envenomation. Elucidation of the proteomic profiles of these snake venoms is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2016.02.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!