Objective: Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations.
Method: We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures.
Results: Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators.
Conclusions: Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13854046.2016.1144793 | DOI Listing |
Disabil Rehabil
January 2025
Stroke Theme, Level 1, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.
Unlabelled: Stroke patients are rarely asked about their responses to specific design attributes. Virtual reality (VR) offers a promising tool to explore how hospital environments are experienced after stroke.
Purpose: To gather perspectives and emotional responses regarding physical design attributes of hospital patient rooms after stroke.
Nanophotonics
January 2025
Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.
View Article and Find Full Text PDFCureus
December 2024
Department of Ophthalmology, Broward Health, Fort Lauderdale, USA.
This literature review explores the emerging role of digital twin (DT) technology in ophthalmology, emphasizing its potential to revolutionize personalized medicine. DTs integrate diverse data sources, including genetic, environmental, and real-time patient data, to create dynamic, predictive models that enhance risk assessment, surgical planning, and postoperative care. The review highlights vital case studies demonstrating the application of DTs in improving the early detection and management of diseases such as glaucoma and age-related macular degeneration.
View Article and Find Full Text PDFFront Psychol
January 2025
Neurointerfaces and Neurotechnologies Laboratory, Neurosciences Research Institute, Samara State Medical University, Samara, Russia.
Metaverse integrates people into the virtual world, and challenges depend on advances in human, technological, and procedural dimensions. Until now, solutions to these challenges have not involved extensive neurosociological research. The study explores the pioneering neurosociological paradigm in metaverse, emphasizing its potential to revolutionize our understanding of social interactions through advanced methodologies such as hyperscanning and interbrain synchrony.
View Article and Find Full Text PDFFront Psychol
January 2025
Department of Psychology, Università degli Studi di Torino, Turin, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!