We report the potential of carbon nanodots (CNDs) as a molecular scaffold for enhancing the antimicrobial activities of small dendritic poly(amidoamines) (PAMAM). Carbon nanodots prepared from sago starch are readily functionalized with PAMAM by using N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Electron microscopy images of these polyaminated CNDs show that they are approximately 30-60nm in diameter. Infrared and fluorescence spectroscopy analyses of the water-soluble material established the presence of the polyamidoaminated moiety and the intrinsic fluorescence of the nanodots. The polyaminated nanodots (CND-PAM1 and CND-PAM2) exhibit in vitro antimicrobial properties, not only to non-multidrug resistant bacteria but also to the corresponding Gram-negative multidrug bacteria. Their minimum inhibitory concentration (MIC) ranges from 8 to 64μg/mL, which is much lower than that of PAMAM G1 or the non-active PAMAM G0 and CNDs. Additionally, they show synergistic effect in combination with tetracycline or colistin. These preliminary results imply that CNDs can serve as a promising scaffold for facilitating the rational design of antimicrobial materials for combating the ever-increasing threat of antibiotic resistance. Moreover, their fluorescence could be pertinent to unraveling their mode of action for imaging or diagnostic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785080 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2016.02.047 | DOI Listing |
J Fungi (Basel)
December 2024
Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary.
(oyster mushroom) holds excellent promise worldwide, bringing several opportunities and augmenting the tool sets used in the biotechnology field, the food industry, and medicine. Our study explores the antimicrobial and probiotic growth stimulation benefits of freeze-dried powders (OMP-TF, oyster mushroom powder from the total fresh sample; OMP-CSR, oyster mushroom powder from the cooked solid residue; OMP-CL, oyster mushroom powder from the cooked liquid), focusing on their bioactive compounds and associated activities. Our research examined polysaccharide fractions-specifically total glucans and α- and β-glucans-alongside secondary metabolites, including polyphenols and flavonoids, from freeze-dried mushroom powders.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
Carbon monoxide (CO) is widely recognized as a significant environmental pollutant and is associated with numerous instances of accidental poisoning in humans. However, it also serves a pivotal role as a signaling molecule in plants, exhibiting functions analogous to those of other gaseous signaling molecules, including nitric oxide (NO) and hydrogen sulfide (HS). In plant physiology, CO is synthesized as an integral component of the defense mechanism against oxidative damage, particularly under abiotic stress conditions such as drought, salinity, and exposure to heavy metals.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China.
General synthesis and mechanical understanding of type I nano-photosensitizers are of great importance for hypoxia-resistant pyroptosis inducers. Herein, a simple solvothermal treatment is developed to convert non-photosensitive small molecules (hemin) into uniform carbon nanodots (HNCDs) with strong type I photodynamic activity and red fluorescence emission. These HNCDs inherit the single atomic Fe-N center of hemin while creating sp-hybridized carbon surroundings, which synergistically modulated the energy level and electron transfer for converting the type II photodynamic process to type I.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Science, Jiangnan University, Wuxi, 214122, China.
In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science, GERMANY.
Bottom-up syntheses of carbon nanodots (CND) using solvothermal treatment of citric acid are known to afford nanometer-sized, amorphous polycitric acid-based materials. The addition of suitable co-reactants in the form of in-situ synthesized N-hetero-π-conjugated chromophores facilitates hereby the overall functionalization. Our incentive was to design a CND model that features phenazine (P-CND) - a well-known N-hetero-π-conjugated chromophore - to investigate the influence of the CND matrix on its redox chemistry as well as photochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!