Mutations in the filamin A (FlnA) gene are frequently associated with severe arterial abnormalities, although the physiological role for this cytoskeletal element remains poorly understood in vascular cells. We used a conditional mouse model to selectively delete FlnA in smooth muscle (sm) cells at the adult stage, thus avoiding the developmental effects of the knockout. Basal blood pressure was significantly reduced in conscious smFlnA knockout mice. Remarkably, pressure-dependent tone of the resistance caudal artery was lost, whereas reactivity to vasoconstrictors was preserved. Impairment of the myogenic behavior was correlated with a lack of calcium influx in arterial myocytes upon an increase in intraluminal pressure. Notably, the stretch activation of CaV1.2 was blunted in the absence of smFlnA. In conclusion, FlnA is a critical upstream element of the signaling cascade underlying the myogenic tone. These findings allow a better understanding of the molecular basis of arterial autoregulation and associated disease states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2016.02.019DOI Listing

Publication Analysis

Top Keywords

smooth muscle
8
arterial
4
arterial myogenic
4
myogenic activation
4
activation smooth
4
muscle filamin
4
filamin mutations
4
mutations filamin
4
filamin flna
4
flna gene
4

Similar Publications

The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.

View Article and Find Full Text PDF

The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Rationale: Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown.

View Article and Find Full Text PDF

Case report: Multisystemic smooth muscle dysfunction syndrome: a rare genetic cause of infantile interstitial lung disease.

Front Pharmacol

January 2025

Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

Multisystemic smooth muscle dysfunction syndrome (MSMDS) is an autosomal dominant disorder caused by mutations in the gene, resulting in variable clinical manifestation and multi-organ dysfunction. Interstitial lung disease (ILD) is a rare phenotype of this condition. We describe a rare infant case of an 8-month-old boy who presented with progressively worsening dyspnea, along with intermittent episodes of respiratory distress and cyanosis since birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!