Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b05134 | DOI Listing |
Introduction: Short-term exposure to air pollution may worsen the course of ischemic heart disease (IHD), causing acute and chronic coronary syndromes.
Objectives: This study aimed to assess the risk of hospital admission due to chronic and acute coronary syndromes (ACS) after exposure to various air pollutants in Poland.
Methods: In this time-series study, the risk of hospital admission due to IHD over 3 days from exposure to several air pollutants was evaluated.
JACC Adv
December 2024
Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
Background: Air pollution is a significant environmental risk factor for cardiovascular diseases (CVDs), but its impact on African populations is under-researched due to limited air quality data and health studies.
Objectives: The purpose of this study was to synthesize available research on the effects of air pollution on CVDs outcomes in African populations, identify knowledge gaps, and suggest areas for research and policy intervention.
Methods: A systematic search of PubMed was conducted using terms capturing criteria ambient air pollutants (for example particulate matter, nitrogen dioxide, ozone, and sulfur dioxide) and CVDs and countries in Africa.
Water Sci Technol
January 2025
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.
This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.
View Article and Find Full Text PDFBMC Public Health
January 2025
Social Environment and Health Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48104, USA.
Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!