N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: A novel hypothesis for autologous stem cell transplantation.

J Chin Med Assoc

The University of Lahore, Defence Road Campus, Lahore, Pakistan; National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan; Allama Iqbal Medical College/Jinnah Hospital Complex, University of Health Sciences, Lahore, Pakistan.

Published: March 2016

Background: Stem cell transplantation is one of the therapeutic options available to repair damaged organs. However, transplanted cells entail several challenges including their survival in diabetes-affected injured tissue. This study was designed to determine the effects of preconditioning of mesenchymal stem cells (MSCs) with N-acetyl cysteine (NAC), a widely used antioxidant drug.

Methods: Diabetic-mouse-derived MSCs (blood glucose ≥ 300 mg/dL) were preconditioned with 30 mM NAC for 1 hour followed by oxidative injury with 100 μM hydrogen peroxide (H2O2) for 1 hour.

Results: Gene expression analysis showed marked upregulation of prosurvival genes (Akt and Bcl-2) and significantly downregulated expression of proapoptotic and stress genes (Capase-3, Bax, Bak, p53, p38, and NF-κB) in the 30 mM-NAC-treated group when compared with those cells treated with H2O2 alone. NAC preconditioning improved cell viability, decreased lactate dehydrogenase release, β-galactosidase activity, and Annexin-V-positive cells. Also, amelioration of oxidative stress, as shown by a decrease in malondialdehyde level and an increase in superoxide dismutase and catalase activities and glutathione level, was observed in the 30 mM-NAC-treated group in comparison to cells treated with H2O2 alone.

Conclusion: This study demonstrates the potential benefits of pharmacological preconditioning of diabetic-mouse-derived MSCs with NAC for amelioration of apoptosis and oxidative stress in H2O2 induced injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcma.2015.09.005DOI Listing

Publication Analysis

Top Keywords

n-acetyl cysteine
8
mesenchymal stem
8
stem cells
8
stem cell
8
cell transplantation
8
diabetic-mouse-derived mscs
8
mm-nac-treated group
8
cells treated
8
treated h2o2
8
oxidative stress
8

Similar Publications

Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.

View Article and Find Full Text PDF

N-acetylcysteine prevents cholinergic and non-cholinergic toxic effects induced by nerve agent poisoning in rats.

Toxicol Res (Camb)

February 2025

Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.

Objective: Organophosphorus Nerve Agent, VX [(O-Ethyl S-diisopropylaminomethyl) methylphosphonothioate] compound interferes with acetylcholine signaling by targeting the AChE enzyme. Studies suggest that in nerve agents poisoning, non-cholinergic effects are also responsible for damage in peripheral tissues including long term damage in brain. Present study reports cholinergic and non-cholinergic effects of VX poisoning and their prevention by use of N-acetylcysteine (NAC) in addition to conventional antidotes atropine sulphate and 2-PAM chloride as an antioxidant.

View Article and Find Full Text PDF

The potential role of N-acetylcysteine as an adjuvant therapy in acute aluminum phosphide poisoning: a randomized clinical trial.

Toxicol Res (Camb)

February 2025

Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Yassen Abd Al Ghafar Street, Shibin El-Kom 6132720, Egypt.

Objective: Aluminum phosphide (AP) intoxication is a life-threatening emergency with no available effective antidote. This study evaluated the efficacy and safety of N-acetylcysteine (NAC) infusion in cases of acute AP poisoning.

Methods: This randomized, single-blinded, parallel-group, controlled, clinical trial enrolled 96 patients with acute AP poisoning.

View Article and Find Full Text PDF

Objective: This review aims to evaluate the efficacy and safety of premedication comprising mucolytics and/or defoaming agents to improve the quality of visualization during elective upper digestive endoscopy (elective upper GI endoscopy) procedure.

Materials And Methods: A systematic review of the literature contained in electronic databases (Medline/Pubmed, Embase, and Lilacs) was performed to identify randomized controlled trials and systematic reviews that assessed patients undergoing upper gastrointestinal endoscopy (elective upper GI Endoscopy) under sedation, after being premedicated with mucolytics and/or defoaming agents for mucous clearance. A meta-analysis was conducted to determine the relative efficacy and safety profile of such premedication.

View Article and Find Full Text PDF

Molecular Mechanism of N-Acetylcysteine Regulating Proliferation and Hormone Secretion of Granulosa Cells in Sheep.

Reprod Domest Anim

January 2025

Tianzhu County Animal Husbandry Technology Extension Station, Tianzhu, Gansu, China.

Granulosa cells (GCs) are pivotal in the development of ovarian follicles, serving not only as supportive cells but also as the primary producers of steroid hormones. The proliferation of these cells and the synthesis of steroid hormones are crucial for follicular development and atresia. In our study, GCs were isolated using follicular fluid aspiration and subsequently identified through immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!