Hirsutella sinensis is considered as the only correct anamorph of Ophiocordyceps sinensis. To improve cordycepin and cordycepic acid production in H. sinensis, the biosynthetic pathways of cordycepin and cordycepic acid were predicted, and verified by cloning and expressing genes involved in these pathways, respectively. Then, 5'-nucleotidase participating in biosynthetic pathway of cordycepin, hexokinase, and glucose phosphate isomerase involved in biosynthetic pathway of cordycepic acid, were demonstrated playing important roles in the corresponding biosynthetic pathway by real-time PCR, accompanying with significantly up-regulated 15.03-, 5.27-, and 3.94-fold, respectively. Moreover, the metabolic regulation of H. sinensis was performed. As expected, cordycepin production reached 1.09 mg/g when additional substrate of 5'-nucleotidase was 4 mg/mL, resulting in an increase of 201.1 % compared with the control. In the same way, cordycepic acid production reached 26.6 and 23.4 % by adding substrate of hexokinase or glucose phosphate isomerase, leading to a rise of 77.3 and 55.1 %, respectively. To date, this is the first time to improve cordycepin and cordycepic acid production through metabolic regulation based on biosynthetic pathway analysis, and metabolic regulation is proved as a simple and effective way to enhance the output of cordycepin and cordycepic acid in submerged cultivation of H. sinensis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-016-2020-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!