Phage display technology, which allows extremely rare ligands to be selected from libraries of variants according to user-defined selection criteria, has made a huge impact on the life sciences. In this chapter, we describe phage display methods for the discovery of chemokine analogs with enhanced pharmacological properties. We discuss strategies for chemokine library design and provide a recommended technique for library construction. We also describe cell-based library selection approaches that we have used to discover chemokine analogs, not only receptor antagonists but also variants with unusual effects on receptor signaling and trafficking. By providing a survey of the different phage chemokine projects that we have undertaken, we comment on the parameters most likely to affect success. Finally, we discuss how phage display-derived chemokine analogs with altered pharmacological activity represent valuable tools to better understand chemokine biology, and why certain among them have the potential to be developed as new medicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2015.09.014 | DOI Listing |
Molecules
December 2024
Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy.
Garlic ( L.) is a species of the onion family () widely used as a food and a folk medicine. The objective of this study was to determine the effects of AGE (aged garlic extract) on pro-inflammatory genes relevant to COVID-19.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan.
Knee osteoarthritis (OA) is a prevalent degenerative joint disease globally, causing pain, stiffness, and disability. Intravascular laser irradiation of blood (ILIB) has been used for chronic pain and musculoskeletal disease. However, evidence on the clinical benefits and serum biomarkers post-ILIB therapy in knee OA is insufficient.
View Article and Find Full Text PDFArrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including , and Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors.
View Article and Find Full Text PDFWorld Allergy Organ J
January 2025
Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Background: The treatment of refractory chronic rhinosinusitis with nasal polyps (CRSwNP) with omalizumab has been well studied based on clinical evaluation. Nevertheless, ideal quantitative or qualitative biomarkers for predicting a different response to biologics urgently need to be explored. We aim to identify potential biomarkers for predicting a good or poor response in patients with refractory CRSwNP.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!