Simultaneous Quantitative and Chemical Fingerprint Analysis of Receptaculum Nelumbinis Based on HPLC-DAD-MS Combined with Chemometrics.

J Chromatogr Sci

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.

Published: April 2016

A rapid and sensitive method based on HPLC-DAD-MS was developed for quantitative analysis of two flavonoids and chemical fingerprint analysis to evaluate the quality of Receptaculum Nelumbinis. The analysis was conducted on a Poroshell 120 C18 column (100 × 4.6 mm, 2.7 μm) with 0.2% formic acid buffer solution and methanol as mobile phases with gradient elution. This method displayed good linearity with R(2) at >0.9999 and limits of quantity <0.37 μg mL(-1). Relative standard deviation values for intra- and interday precision were <0.82 and 1.03%, respectively. The mean recovery of hyperoside was 95.54% and of isoquercitrin was 92.10%. Hyperoside and isoquercitrin were determined simultaneously, and 12 peaks in the chemical fingerprint were identified. The chemometric methods, including similarity analysis, hierarchical clustering analysis and principal component analysis, were applied to distinguish 11 batches of Receptaculum Nelumbinis samples. The above results could validate each other and successfully divide these samples into two groups. Moreover, hyperoside and isoquercitrin could be selected as chemical markers to evaluate the quality of Receptaculum Nelumbinis from different localities. This study demonstrated that the developed method was a powerful and beneficial tool to carry out the quality control of Receptaculum Nelumbinis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885404PMC
http://dx.doi.org/10.1093/chromsci/bmv229DOI Listing

Publication Analysis

Top Keywords

chemical fingerprint
8
fingerprint analysis
8
receptaculum nelumbinis
8
based hplc-dad-ms
8
simultaneous quantitative
4
quantitative chemical
4
analysis
4
analysis receptaculum
4
nelumbinis based
4
hplc-dad-ms combined
4

Similar Publications

Quantum chemical studies of carbon-based graphene-like nanostructures: from benzene to coronene.

J Mol Model

January 2025

Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.

Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.

Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.

View Article and Find Full Text PDF

Metabolic Fingerprint of Dual Body Fluids Deciphers Diabetic Retinopathy.

Small

January 2025

Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Gene Therapy Center, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, P. R. China.

Diabetic retinopathy (DR) is a microvascular complication of diabetes, affecting 34.6% of diabetes patients worldwide. Early detection and timely treatment can effectively improve the prognosis of DR.

View Article and Find Full Text PDF

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!