Measures of brain morphometry derived from T1-weighted (T1W) magnetic resonance imaging (MRI) are widely used to elucidate the relation between brain structure and function. However, the computation of T1W morphometric measures can be confounded by subject-related factors such as head motion and level of hydration. A recent study reported subtle yet significant changes in brain volume from morning to evening in a large group of patient populations as well as in healthy elderly individuals. In addition, there is a growing recognition that factors such as circadian rhythm can impact MRI measures of brain function and structure. Here, we provide a comprehensive assessment of the impact of time-of-day (TOD) on widely used measures of brain morphometry in a group of 19 healthy young adults. Our results show that (a) even in a small group of healthy adult volunteers, a highly significant reduction in apparent brain volume, from morning to evening, could be detected; (b) the apparent volume of all three major tissue compartments - gray matter, white matter, and cerebrospinal fluid - were influenced by TOD, and the magnitude of the TOD effect varied across the tissue compartments; (c) measures of cortical thickness, cortical surface area, and gray matter density computed with widely used neuroimaging software suites (i.e., FreeSurfer, FSL-VBM) were all affected by TOD, while other measures, such as curvature indices and sulcal depth, were not; and (d) the effect of TOD appeared to have a greater impact on morphometric measures of the frontal and temporal lobe than on other major lobes of the brain. Our results suggest that the TOD effect is a physiological phenomenon and that controlling for the effect of TOD is crucial for proper interpretation of apparent structural differences measured with T1W morphometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602560 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2016.02.034 | DOI Listing |
Heliyon
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, Egypt.
The current study provides the first ultrastructural observations on the intraerythrocytic stages of so-called Haemogregarina damiettae and their cytopathological effects on the infected erythrocytes (IEs) in addition to the recording of new morphometric data. The intraerythrocytic stages are attributed to the immature forms or trophozoites (Ts), and mature gamonts (Gs). Ts are typically bowling-bottle shaped with nucleus (TN) occupying its globose part, while Gs are typically banana- shaped.
View Article and Find Full Text PDFAnat Sci Int
January 2025
Department of Anatomy, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye.
This study aimed to determine the normal size of the male external genital organs and anogenital distance in human fetuses during the fetal period through the anatomic morphometric method. The study was performed on 104 spontaneously aborted human male fetuses aged between 10 and 39 weeks of gestation. Fetuses were divided into groups according to gestational weeks, months, and trimesters.
View Article and Find Full Text PDFUnlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).
View Article and Find Full Text PDFEcol Evol
January 2025
Conservation Science Research Group, School of Environmental and Life Sciences University of Newcastle Callaghan New South Wales Australia.
Amphibians are among the most threatened vertebrate taxa globally. Their global decline necessitates effective conservation actions to bolster populations across both the larval and adult stages. Constructing man-made ponds is one action proven to enhance reproduction in pond-breeding amphibians.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!