AI Article Synopsis

  • An economic biosorbent derived from the Stem of Tecomella undulata was used to simultaneously remove fluoride and inorganic arsenic species (As(III) and As(V)) from water samples, with optimized conditions evaluated through various parameters like pH and temperature.
  • The removal efficacy was assessed using advanced methods including cloud point extraction and ion chromatography, revealing that the biosorption process was spontaneous and efficient, as indicated by kinetic and thermodynamic studies.
  • Characterization techniques like SEM and FTIR showed functional groups on the biosorbent's surface crucial for ion adsorption, allowing it to effectively treat real water samples from a fluoride and arsenic-affected area in Pakistan.

Article Abstract

Simultaneous removal of fluoride (F(-)), inorganic arsenic species, As(III) and As(V), from aqueous samples has been performed using an economic indigenous biosorbent (Stem of Tecomella undulata). The inorganic As species in water samples before and after biosorption were determined by cloud point and solid phase extraction methods, while F(-) was determined by ion chromatography. Batch experiments were carried out to evaluate the equilibrium adsorption isotherm studies for As(III), As(V) and F(-) in aqueous solutions. Several parameters of biosorption were optimized such as pH, biomass dosage, analytes concentration, time and temperature. The surface of biosorbent was characterized by SEM and FTIR. The FTIR study indicated the presence of carbonyl and amine functional groups which may have important role in the sorption/removal of these ions. Thermodynamic and kinetic study indicated that the biosorption of As(III), As(V) and F(-) were spontaneous, exothermic and followed by pseudo-second-order. Meanwhile, the interference study revealed that there was no significant effect of co-existing ions for the removal of inorganic As species and F(-) from aqueous samples (p > 0.05). It was observed that the indigenous biosorbent material simultaneously adsorbed As(III) (108 μg g(-1)), As(V) (159 μg g(-1)) and F(-) (6.16 mg g(-1)) from water at optimized conditions. The proposed biosorbent was effectively regenerated and efficiently used for several experiments, to remove the As(III), As(V) and F(-) from real water sample collected from endemic area of Pakistan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.02.017DOI Listing

Publication Analysis

Top Keywords

asiii asv
16
removal inorganic
8
inorganic arsenic
8
arsenic species
8
stem tecomella
8
asv aqueous
8
aqueous samples
8
indigenous biosorbent
8
inorganic species
8
study indicated
8

Similar Publications

Quorum sensing-enhanced electron transfer in anammox consortia: A mechanism for improved resistance to variable-valence heavy metals.

J Hazard Mater

January 2025

Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083,  China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China. Electronic address:

Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress.

View Article and Find Full Text PDF

Inorganic arsenic (As) is one of the most significant chemical contaminants in drinking water worldwide. Although membrane-based technologies are commonly used for As removal, they often encounter challenges including complex operation, high energy consumption, and the need for chemical addition. To address these challenges, we proposed a one-step ultrafiltration (UF) process empowered by in situ biogenic manganese oxides (BioMnO) cake layers without any additional chemicals, to treat source water contaminated with both As and manganese (Mn).

View Article and Find Full Text PDF

New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media.

Nanomaterials (Basel)

December 2024

Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.

Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.

View Article and Find Full Text PDF

Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (HO) concentrations ranging from 5.8 to 96 μmol L in rainwater, which may contribute to the oxidation and removal of As.

View Article and Find Full Text PDF

Missing pieces in the puzzle of ecology of microbial arsenate reduction.

J Hazard Mater

December 2024

Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China.

Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!