Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size ([Formula: see text]) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size ([Formula: see text]). Here, we propose a Bayesian mixed-negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment [Formula: see text] interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set, and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model provides a viable option for analyzing count data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856070PMC
http://dx.doi.org/10.1534/g3.116.028118DOI Listing

Publication Analysis

Top Keywords

count data
16
[formula text]
12
genotype environment
8
genomic prediction
8
prediction models
8
sample size
8
size [formula
8
number parameters
8
data set
8
data
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!