Genetically Determined Variation in Lysis Time Variance in the Bacteriophage φX174.

G3 (Bethesda)

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912.

Published: April 2016

Researchers in evolutionary genetics recently have recognized an exciting opportunity in decomposing beneficial mutations into their proximal, mechanistic determinants. The application of methods and concepts from molecular biology and life history theory to studies of lytic bacteriophages (phages) has allowed them to understand how natural selection sees mutations influencing life history. This work motivated the research presented here, in which we explored whether, under consistent experimental conditions, small differences in the genome of bacteriophage φX174 could lead to altered life history phenotypes among a panel of eight genetically distinct clones. We assessed the clones' phenotypes by applying a novel statistical framework to the results of a serially sampled parallel infection assay, in which we simultaneously inoculated each of a large number of replicate host volumes with ∼1 phage particle. We sequentially plated the volumes over the course of infection and counted the plaques that formed after incubation. These counts served as a proxy for the number of phage particles in a single volume as a function of time. From repeated assays, we inferred significant, genetically determined heterogeneity in lysis time and burst size, including lysis time variance. These findings are interesting in light of the genetic and phenotypic constraints on the single-protein lysis mechanism of φX174. We speculate briefly on the mechanisms underlying our results, and we discuss the potential importance of lysis time variance in viral evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825663PMC
http://dx.doi.org/10.1534/g3.115.024075DOI Listing

Publication Analysis

Top Keywords

lysis time
16
time variance
12
life history
12
genetically determined
8
bacteriophage φx174
8
lysis
5
time
5
determined variation
4
variation lysis
4
variance bacteriophage
4

Similar Publications

Introduction: Although CAR-T cell therapy has limited efficacy against solid tumors, it has been hypothesized that prior treatment with Image-Guided Radiation Therapy (IGRT) would increase CAR-T cell tumor infiltration, leading to improved antigen specific expansion of CAR-T cells.

Methods: To test this hypothesis in a metastatic triple negative breast cancer (TNBC) model, we engineered two anti-CEA single-chain Fab (scFab) CAR-T cells with signaling domains from CD28zeta and 4-1BBzeta, and tested them and .

Results: The anti-CEA scFab CAR-T cells generated from three different human donors demonstrated robust expression, expansion, and lysis of only CEA-positive TNBC cells, with the CD28z-CAR-T cells showing the highest cytotoxicity.

View Article and Find Full Text PDF

Introduction: In the last decades, the recombinant tissue plasminogen activator alteplase has been the standard fibrinolytic treatment of acute myocardial infarction, pulmonary embolism, and acute ischemic stroke. An optimized version of alteplase, tenecteplase, has been developed by exchanging six amino acids to increase half-life, achieve higher fibrin selectivity and increase resistance to plasminogen activator inhibitor-1. Meanwhile, several products containing tenecteplase exist.

View Article and Find Full Text PDF

Polyamidoamine (PAMAM) dendrimers, with their unique structural versatility and tunable surface functionalities, have emerged as promising nanomaterials for a wide range of biomedical applications. However, their in vivo use raises concerns, as unintended interactions between dendrimers and blood components could disrupt the delicate hemostatic balance and lead to serious complications like bleeding or thrombosis. In this study, we explored the impact of low-generation PAMAM dendrimers on the kinetics of fibrin clot formation, along with their influence on the structure, properties, and resistance to lysis of the resulting clots.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) have been emerging as a concerning threat to both environment and public health. The continuous input of manure, irrigation water, and fertilizers increases the abundance of ARGs in agricultural environments. However, current risk assessments have focused on clinical settings, which are not applicable to environmental settings.

View Article and Find Full Text PDF

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!