Considering the increasing importance of fluorinated peptides, the development of efficient and reliable synthetic methods for the incorporation of unnatural fluorinated amino acids into peptides is a current matter of interest. In this study, we report the convenient Boc/benzyl and Cbz/tert-butyl protection of both enantiomers of the quaternarized amino acid α-trifluoromethylalanine [(R)- and (S)-α-Tfm-Ala]. Because of the deactivation of the nitrogen atom of this synthetic amino acid by the strong electron withdrawing trifluoromethyl group, the peptide coupling on this position is a challenge. In order to provide a robust synthetic methodology for the incorporation of enantiopure (R)- and (S)-α-trifluoromethylalanines into peptides, we report herein the preparation of dipeptides ready to use for solid phase peptide synthesis. The difficult peptide coupling on the nitrogen atom of the α-trifluoromethylalanines was performed in solution phase by means of highly electrophilic amino acid chlorides or mixed anhydrides. The synthetic effectiveness of this fluorinated dipeptide building block strategy is illustrated by the solid phase peptide synthesis (SPPS) of the Ac-Ala-Phe-(R)-α-Tfm-Ala-Ala-NH2 tetrapeptide.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-016-2200-9DOI Listing

Publication Analysis

Top Keywords

solid phase
12
phase peptide
12
peptide synthesis
12
amino acid
12
dipeptide building
8
ready solid
8
nitrogen atom
8
peptide coupling
8
peptide
5
synthesis
4

Similar Publications

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Discovery of Rezatapopt (PC14586), a First-in-Class, Small-Molecule Reactivator of p53 Y220C Mutant in Development.

ACS Med Chem Lett

January 2025

Discovery Biology, PMV Pharmaceuticals, Inc., 400 Alexander Park Drive, Suite 301, Princeton, New Jersey 08540, United States.

p53 is a potent transcription factor that is crucial in regulating cellular responses to stress. Mutations in the gene are found in >50% of human cancers, predominantly occurring in the DNA-binding domain (amino acids 94-292). The Y220C mutation accounts for 1.

View Article and Find Full Text PDF

Thermal Behavior of -Octanol and Related Ether Alcohols.

J Chem Eng Data

January 2025

Institute of Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, Darmstadt D-64287, Germany.

The thermal behavior of -octanol and related ether alcohols has been studied by differential scanning calorimetry (DSC). The melting point, heat of fusion, and isobaric heat capacities of -octanol obtained from the DSC measurements are in good agreement with literature values. The ether alcohols display kinetic barriers for forming a solid phase during cooldown.

View Article and Find Full Text PDF

Perovskite nanocrystals (NCs) with their excellent optical and semiconductor properties have emerged as primary candidates for optoelectronic applications. While extensive research has been conducted on the 3D perovskite phase, the zero-dimensional (0D) form of this promising material in the NC format remains elusive. In this paper, a new synthesis strategy is proposed.

View Article and Find Full Text PDF

Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!