We conducted a six-year epidemiological study on human coronaviruses (HCoVs) circulating in Hong Kong, using 8275 nasopharyngeal samples from patients with acute respiratory tract infections. HCoVs were detected in 77 (0.93%) of the samples by a pan-HCoV RT-PCR assay. The most frequently detected HCoV species was HCoV-OC43 (0.58%), followed by HCoV-229E (0.15%), HCoV-HKU1 (0.13%) and HCoV-NL63 (0.07%). HCoVs were detected throughout the study period (September 2008-August 2014), with the highest detection rate from September 2010 to August 2011 (22/1500, 1.47%). Different seasonal patterns of each HCoV species in Hong Kong were noted. HCoV-OC43 was predominant in the fall and winter, whereas HCoV-HKU1 showed peak activity in winter, with a few cases occurred in spring and summer. HCoV-229E mainly occurred in winter and spring, while HCoV-NL63 was predominant in summer and autumn. HCoVs most commonly infect the elderly and young children, with median age of 79.5 years (range, 22 days to 95 years). Intriguingly, the detection rate of HCoV-OC43 in the age group of > 80 years (26/2380, 1.09%) was significantly higher than that in the age group of 0-10 years (12/2529, 0.47%) (P < 0.05). These data provides new insight into the epidemiology of coronaviruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090542 | PMC |
http://dx.doi.org/10.1007/s12250-016-3714-8 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFJ Invasive Cardiol
January 2025
Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Cardiology Division, Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China; Cardiac Medical Unit, Grantham Hospital, Hong Kong SAR, China.
Cerebellum
January 2025
Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!