The Arabidopsis trichome is an active mechanosensory switch.

Plant Cell Environ

Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.

Published: May 2017

Trichomes ('hair cells') on Arabidopsis thaliana stem and leaf surfaces provide a range of benefits arising from their shape and disposition. These include tempting herbivores to sample constitutive toxins before they reach the bulk of the tissue. We asked whether, in addition, small mechanical disturbances such as an insect can make elicit signals that might help the plant respond to herbivory. We imaged, pressed and brushed trichomes in several ways, most notably with confocal microscopy of trichomes transgenically provided with apoplastic pH reporter apo-pHusion and cytosolic Ca reporter cameleon. In parallel, we modelled trichome wall mechanics with finite element analysis. The stimulated trichome focuses force on a pliant zone and the adjoining podium of the stalk. A buckling instability can further focus force on a skirt of cells surrounding the podium, eliciting oscillations of cytosolic Ca and shifts in apoplastic pH. These observations represent active physiological response. Modelling establishes that the effectiveness of force focusing and buckling is due to the peculiar tapering wall structure of the trichome. Hypothetically, these active mechanosensing functions enhance toxin synthesis above constitutive levels, probably via a priming process, thus minimizing the costly accumulation of toxins in the absence of herbivore attack but assuring rapid build-up when needed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12728DOI Listing

Publication Analysis

Top Keywords

arabidopsis trichome
4
trichome active
4
active mechanosensory
4
mechanosensory switch
4
switch trichomes
4
trichomes 'hair
4
'hair cells'
4
cells' arabidopsis
4
arabidopsis thaliana
4
thaliana stem
4

Similar Publications

Brassica villosa is characterized by its dense hairiness and high resistance against the fungal pathogen Sclerotinia sclerotiorum. Information on the genetic and molecular mechanisms governing trichome development in B. villosa is rare.

View Article and Find Full Text PDF

Regulatory mechanisms of trichome and root hair development in Arabidopsis.

Plant Mol Biol

December 2024

Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.

In plants, cell fate determination is regulated temporally and spatially via a complex of signals consisting of a large number of genetic interactions. Trichome and root hair formation are excellent models for studying cell fate determination in plants. Nowadays, the mysteries underlying the reprograming of trichome and root hair and how nature programs the development of trichome and root hair is an interesting topic in the scientific field.

View Article and Find Full Text PDF

The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology.

Plant Physiol

December 2024

Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain.

The number and distribution of trichomes, i.e., the trichome pattern, in different plant organs shows a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors.

View Article and Find Full Text PDF

Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua.

Int J Biol Macromol

December 2024

Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China. Electronic address:

Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis.

View Article and Find Full Text PDF

Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism.

Physiol Plant

November 2024

Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India.

Article Synopsis
  • Glucuronoxylan, primarily found in dicot secondary cell walls, stabilizes plant structure through interaction with cellulose; its O-acetylation is key for maintaining this stability.
  • The enzyme ESKIMO1/TBL29 acts as the primary xylan O-acetyl transferase in Arabidopsis stems, and its absence leads to stunted growth and structural issues in xylem vessels.
  • Analysis of the eskimo1 mutant revealed changes in the expression of genes related to aliphatic glucosinolates (GSLs), with increased levels of certain GSLs and metabolites, indicating metabolic reprogramming tied to the plant's growth issues.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!