During labor and delivery the cardiotocogram (CTG), the combined registration of fetal heart rate (FHR) and uterine contractions, is used to monitor fetal well-being. In part A of our study we introduced a new mathematical computer model for CTG simulation in order to gain insight into the complex relation between these signals. By reducing model complexity and by using physically more realistic descriptions, this model was improved with respect to our previous model. Aim of part B of this study is to gain insight into the cascade of events from uterine contractions causing combined uterine flow reduction and umbilical cord compression, resulting in blood and oxygen pressure variations, which lead to changes in FHR via the baro- and chemoreflex. In addition, we extensively describe and discuss the estimation of model parameter values. Simulation results are in good agreement with sheep data and show the ability of the model to describe variable decelerations. Despite reduced model complexity, parameter estimation still remains difficult due to limited clinical data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2016.01.046DOI Listing

Publication Analysis

Top Keywords

parameter estimation
8
variable decelerations
8
uterine contractions
8
gain insight
8
model complexity
8
model
7
mathematical model
4
model simulate
4
simulate cardiotocogram
4
cardiotocogram labor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!