A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antinociception by Sigma-1 Receptor Antagonists: Central and Peripheral Effects. | LitMetric

Antinociception by Sigma-1 Receptor Antagonists: Central and Peripheral Effects.

Adv Pharmacol

Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain. Electronic address:

Published: November 2016

There is plenty of evidence supporting the modulatory role of sigma-1 receptors (σ1Rs) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists, particularly in nonacute sensitizing conditions involving sustained afferent drive, activity-dependent plasticity/sensitization, and ultimately pain hypersensitivity, as it is the case in chronic pains of different etiology. Antinociceptive effects of σ1R antagonists both when acting alone and in combination with opioids (to enhance opioid analgesia) have been reported at both central and peripheral sites. At the central level, findings at the behavioral (animal pain models), electrophysiological (spinal wind-up recordings), neurochemical (spinal release of neurotransmitters) and molecular (NMDAR function) level supports a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Attenuation of activity-induced plastic changes (central sensitization) following tissue injury/inflammation or nerve damage could thus underlie the central inhibitory effect of σ1R antagonists. Moreover, recent pieces of information confirm the involvement of σ1R in mechanisms regulating pain at the periphery, where σ1Rs are highly expressed, particularly in dorsal root ganglia. Indeed, local peripheral administration of σ1R antagonists reduces inflammatory hyperalgesia. Potentiation of opioid analgesia is also supported, particularly at supraspinal sites and at the periphery, where locally administered σ1R antagonists unmask opioid analgesia. Altogether, whereas σ1R activation is coupled to pain facilitation and inhibition of opioid antinociception, σ1R antagonism inhibits pain hypersensitivity and "releases the brake" enabling opioids to exert enhanced antinociceptive effects, both at the central nervous system and at the periphery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.apha.2015.11.003DOI Listing

Publication Analysis

Top Keywords

σ1r antagonists
24
opioid analgesia
12
σ1r
10
central peripheral
8
sustained afferent
8
pain hypersensitivity
8
antinociceptive effects
8
antagonists
7
central
6
pain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!