T2* mapping of subtalar cartilage: Precision and association between anatomical variants and cartilage composition.

J Orthop Res

Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium.

Published: November 2016

Hindfoot arthritis is an important contributor to foot pain and physical disability. While the subtalar joint (STJ) is most frequently affected, anatomical variants such as facet configuration were suggested to further STJ cartilage deterioration. T2* mapping enables detection of ultra-structural cartilage change, particularly in thin cartilage layers, but its feasibility in the STJ has not yet been evaluated. The purpose of this study was to evaluate segmentation consistency and inter-scan short-term precision error of T2* mapping of talocalcaneal cartilage and to investigate the relationship between facet configuration and STJ T2* values. Using 3Tesla morphological magnetic resonance imaging, STJ configuration was categorized according to the degree of fusion between anterior, medial, or posterior facets. Subsequently, two repeats of multi-echo gradient recalled echo sequences were performed to obtain T2* maps with repositioning. Segmentation consistency of T2* values attained an ICC of 0.90 (95%CI 0.69-0.99). Precision errors comprised a coefficient of variation (CV) ranging 0.01-0.05, corresponding to a root mean square CV of 0.03-0.04. A 2-joint configuration type (i.e., fused anterior-medial facets) was significantly associated with a decrease in posterior facet T2* values (β = -0.6, p = 0.046). STJ T2* mapping is a reliable method requiring at least a 4% difference within people to enable detection of significant change. Anatomical variants in STJ configuration were associated with T2* values with the more stable 3-joint types exhibiting more favorable cartilage outcomes. Longer-term larger-scaled studies focusing on arthritis pathology are needed to further support the use of T2* mapping in hindfoot disease monitoring. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1969-1976, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.23214DOI Listing

Publication Analysis

Top Keywords

t2* mapping
20
t2* values
16
anatomical variants
12
t2*
10
facet configuration
8
segmentation consistency
8
stj t2*
8
stj configuration
8
cartilage
7
stj
7

Similar Publications

Purpose: To provide a fast quantitative imaging approach for a 0.55T scanner, where signal-to-noise ratio is limited by the field strength and k-space sampling speed is limited by a lower specification gradient system.

Methods: We adapted the three-dimensional spiral projection imaging MR fingerprinting approach to 0.

View Article and Find Full Text PDF

Repeatability of radiomic features in myocardial T1 and T2 mapping.

Eur Radiol

January 2025

Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany.

Purpose: To investigate the test-retest repeatability of radiomic features in myocardial native T1 and T2 mapping.

Methods: In this prospective study, 50 healthy volunteers (29 women and 21 men, mean age 39.4 ± 13.

View Article and Find Full Text PDF

Aims: The aim of this study was to develop an ultra-short echo time 3D magnetic resonance imaging (MRI) method for imaging subacute myocardial infarction (MI) quantitatively and in an accelerated way. Here, we present novel 3D T- and T -weighted Multi-Band SWeep Imaging with Fourier Transform and Compressed Sensing (MB-SWIFT-CS) imaging of subacute MI in mice hearts .

Methods And Results: Relaxation time-weighted and under-sampled 3D MB-SWIFT-CS MRI were tested with manganese chloride (MnCl) phantom and mice MI model.

View Article and Find Full Text PDF

Background: Cervical cancer is considered one of the most common gynecological malignancies with an increased incidence in developing countries. Magnetic resonance imaging (MRI) plays a valuable role in staging cervical cancer and providing valuable information necessary for selecting the appropriate treatment plan, while closely correlating with the prognosis of the patient.

Objective: The aim of this study is to assess the diagnostic value of diffusion-weighted imaging (DWI) in the preoperative loco-regional staging of cervical carcinoma.

View Article and Find Full Text PDF

Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice.

Neuroimage

January 2025

Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan. Electronic address:

Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!