The radiation pressure of light can act to damp and cool the vibrational motion of a mechanical resonator, but even if the light field has no thermal component, shot noise still sets a limit on the minimum phonon occupation. In optomechanical sideband cooling in a cavity, the finite off-resonant Stokes scattering defined by the cavity linewidth combined with shot noise fluctuations dictates a quantum backaction limit, analogous to the Doppler limit of atomic laser cooling. In our work, we sideband cool a micromechanical membrane resonator to the quantum backaction limit. Monitoring the optical sidebands allows us to directly observe the mechanical object come to thermal equilibrium with the optical bath. This level of optomechanical coupling that overwhelms the intrinsic thermal decoherence was not reached in previous ground-state cooling demonstrations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.063601DOI Listing

Publication Analysis

Top Keywords

quantum backaction
12
backaction limit
12
laser cooling
8
micromechanical membrane
8
shot noise
8
limit
5
cooling micromechanical
4
membrane quantum
4
limit radiation
4
radiation pressure
4

Similar Publications

The number of excitations in a large quantum system (harmonic oscillator or qudit) can be measured in a quantum nondemolition manner using a dispersively coupled qubit. It typically requires a series of qubit pulses that encode various binary questions about the photon number. Recently, a method based on the fluorescence measurement of a qubit driven by a train of identical pulses was introduced to track the photon number in a cavity, hence simplifying its monitoring and raising interesting questions about the measurement backaction of this scheme.

View Article and Find Full Text PDF

Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements imposes a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is necessary to leverage a backaction evading measurement technique, reduce thermal noise to below the level of backaction, and exploit cancellations of any excess noise contributions at the detector.

View Article and Find Full Text PDF

In this Letter, we use quantum trajectory theory to simulate heterodyne detection of narrow bandwidth superradiant lasing from an incoherently excited atomic ensemble. To this end, we describe the system dynamics and account for stochastic measurement backaction by second-order mean-field theory. Our simulations show how heterodyne measurements break the phase symmetry, and initiate the atomic coherence with a random phase and a long temporal phase coherence.

View Article and Find Full Text PDF

Cavity-electromechanical systems are extensively used for sensing and controlling the vibrations of mechanical resonators down to their quantum limit. The nonlinear radiation-pressure interaction in these systems could result in an unstable response of the mechanical resonator showing features such as frequency-combs, period-doubling bifurcations and chaos. However, due to weak light-matter interaction, typically these effects appear at very high driving strengths.

View Article and Find Full Text PDF

We spatially expand and subsequently contract the motional thermal state of a levitated nanoparticle using a hybrid trapping scheme. The particle's center-of-mass motion is initialized in a thermal state (temperature 155 mK) in an optical trap and then expanded by subsequent evolution in a much softer Paul trap in the absence of optical fields. We demonstrate expansion of the motional state's standard deviation in position by a factor of 24.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!