Signalling pathways underlying the phenomenon of remote ischaemic preconditioning (RPc) cardioprotection are not completely understood. The existing evidence agrees that intact sensory innervation of the remote tissue/organ is required for the release into the systemic circulation of preconditioning factor(s) capable of protecting a transplanted or isolated heart. However, the source and molecular identities of these factors remain unknown. Since the efficacy of RPc cardioprotection is critically dependent upon vagal activity and muscarinic mechanisms, we hypothesized that the humoral RPc factor is produced by the internal organ(s), which receive rich parasympathetic innervation. In a rat model of myocardial ischaemia/reperfusion injury we determined the efficacy of limb RPc in establishing cardioprotection after denervation of various visceral organs by sectioning celiac, hepatic, anterior and posterior gastric branches of the vagus nerve. Electrical stimulation was applied to individually sectioned branches to determine whether enhanced vagal input to a particular target area is sufficient to establish cardioprotection. It was found that RPc cardioprotection is abolished in conditions of either total subdiaphragmatic vagotomy, gastric vagotomy or sectioning of the posterior gastric branch. The efficacy of RPc cardioprotection was preserved when hepatic, celiac or anterior gastric vagal branches were cut. In the absence of remote ischaemia/reperfusion, electrical stimulation of the posterior gastric branch reduced infarct size, mimicking the effect of RPc. These data suggest that the circulating factor (or factors) of RPc are produced and released into the systemic circulation by the visceral organ(s) innervated by the posterior gastric branch of the vagus nerve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769182 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150108 | PLOS |
Oxid Med Cell Longev
March 2020
Department of Anesthesiology, University of Hong Kong, Hong Kong SAR, China.
Diabetic hearts are more vulnerable to ischemia/reperfusion (I/R) injury and less responsive to remifentanil preconditioning (RPC), but the underlying mechanisms are incompletely understood. Caveolin-3 (Cav-3), the dominant isoform of cardiomyocyte caveolae, is reduced in diabetic hearts in which oxidative stress is increased. This study determined whether the compromised RPC in diabetes was an independent manifestation of hyperglycemia-induced oxidative stress or linked to impaired Cav-3 expression with associated signaling abnormality.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2019
Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China. Electronic address:
Remifentanil postconditioning (RPC) has been shown to provide potent cardioprotection against ischemia/reperfusion (I/R) injury, but the underlying mechanism has not been fully elucidated. The current study was designed to investigate whether RPC protects cardiomyocytes against I/R injury through enhancement of autophagic flux. H9c2 cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to mimic myocardial I/R injury in vitro.
View Article and Find Full Text PDFEur J Pharmacol
June 2018
Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China. Electronic address:
Remifentanil preconditioning (RPC) exerts protection in normal hearts, but has not been investigated in heart failure. The aim of the present study was to evaluate the effect of RPC in a chronic failing rat heart model and the mechanisms involving mitogen-activated protein kinases (MAPK) and Bcl-2 protein family. The doxorubicin induced failing rat hearts were subjected to 30 min ischemia / 120 min reperfusion (IR) with or without RPC by using Langendorff apparatus.
View Article and Find Full Text PDFShock
August 2018
Department of Anesthesiology, The first Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Remifentanil postconditioning (RPC) confers robust cardioprotection against ischemia/reperfusion (I/R) injury. We recently determined that HDAC3 was involved in RPC-induced cardioprotection. However, the role of HDAC3 and its possible mechanisms in RPC-induced cardioprotection are unknown, which we aimed to evaluate in an in vitro hypoxia/reoxygenation (HR) model.
View Article and Find Full Text PDFCan J Physiol Pharmacol
October 2017
e Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!