We have previously shown that Protein Kinase C delta (PKCδ) functions as a tumor promoter in non-small cell lung cancer (NSCLC), specifically in the context of K-ras addiction. Here we define a novel PKCδ -> integrin αVβ3 ->Extracellular signal-Regulated Kinase (ERK) pathway that regulates the transformed growth of K-ras dependent NSCLC cells. To explore how PKCδ regulates tumorigenesis, we performed mRNA expression analysis in four KRAS mutant NSCLC cell lines that stably express scrambled shRNA or a PKCδ targeted shRNA. Analysis of PKCδ-dependent mRNA expression identified 3183 regulated genes, 210 of which were specifically regulated in K-ras dependent cells. Genes that regulate extracellular matrix and focal adhesion pathways were most highly represented in this later group. In particular, expression of the integrin pair, αVβ3, was specifically reduced in K-ras dependent cells with depletion of PKCδ, and correlated with reduced ERK activation and reduced transformed growth as assayed by clonogenic survival. Re-expression of PKCδ restored ITGAV and ITGB3 mRNA expression, ERK activation and transformed growth, and this could be blocked by pretreatment with a αVβ3 function-blocking antibody, demonstrating a requirement for integrin αVβ3 downstream of PKCδ. Similarly, expression of integrin αV restored ERK activation and transformed growth in PKCδ depleted cells, and this could also be inhibited by pretreatment with PD98059.Our studies demonstrate an essential role for αVβ3 and ERK signalingdownstream of PKCδ in regulating the survival of K-ras dependent NSCLC cells, and identify PKCδ as a novel therapeutic target for the subset of NSCLC patients with K-ras dependent tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951259PMC
http://dx.doi.org/10.18632/oncotarget.7560DOI Listing

Publication Analysis

Top Keywords

k-ras dependent
24
transformed growth
20
integrin αvβ3
12
mrna expression
12
erk activation
12
pkcδ
11
pkcδ regulates
8
growth k-ras
8
lung cancer
8
dependent nsclc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!