Organocatalysis by Networks of Cooperative Hydrogen Bonds: Enantioselective Direct Mannich Addition to Preformed Arylideneureas.

Angew Chem Int Ed Engl

Departamento de Química, Universidad de las Islas Baleares, 07122, Palma de Mallorca, Spain.

Published: March 2016

The concept of noncovalent organocatalysis by means of networks of cooperative hydrogen bonds (NCHB organocatalysis) has been explored. Arylideneureas were chosen as ideal substrates because of their powerful donor-acceptor properties. We have examined their uncatalyzed, direct Mannich reaction with acetoacetates in comparison with that catalyzed by a number of salan derivatives capable of providing a network of cooperative hydrogen bonds. Catalyst D [(R,R)-N,N'-bis(salicyl)cyclohexane-1,2-diamine] was found to drive the above direct Mannich reaction in an enantioselective manner, thereby allowing the synthesis of several Biginelli dihydropyrimidinones with high enantioselectivity. DFT calculations (B3LYP-D-PCM/6-31+G*//B3LYP/6-31+G*) revealed that the NCHB organocatalyst lowers the energy barrier of the reaction. The NCHB organocatalysts appear to function as biomimetic catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201511555DOI Listing

Publication Analysis

Top Keywords

cooperative hydrogen
12
hydrogen bonds
12
direct mannich
12
organocatalysis networks
8
networks cooperative
8
mannich reaction
8
bonds enantioselective
4
enantioselective direct
4
mannich addition
4
addition preformed
4

Similar Publications

Exploring the synergistic effect of Lactiplantibacillus plantarum 1-24-LJ and lipase on improving Quality, Flavor, and safety of Suanzharou.

Food Res Int

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China. Electronic address:

The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

Enhanced Cooperative Generalized Compressive Strain and Electronic Structure Engineering in W-NiN for Efficient Hydrazine Oxidation Facilitating H Production.

Adv Mater

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

As promising bifunctional electrocatalysts, transition metal nitrides are expected to achieve an efficient hydrazine oxidation reaction (HzOR) by fine-tuning electronic structure via strain engineering, thereby facilitating hydrogen production. However, understanding the correlation between strain-induced atomic microenvironments and reactivity remains challenging. Herein, a generalized compressive strained W-NiN catalyst is developed to create a surface with enriched electronic states that optimize intermediate binding and activate both water and NH.

View Article and Find Full Text PDF

3-Iodo-aniline.

IUCrdata

December 2024

Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa.

The title compound, CHIN, is the -iodinated derivative of aniline. The asymmetric unit contains two mol-ecules. The structure was refined as a two-component inversion twin with a volume ratio of 55.

View Article and Find Full Text PDF

In remote areas, visiting a laboratory for sleep testing is inconvenient. We, therefore, developed a Mobile Sleep Lab in a bus powered by fuel cells with two sleep measurement chambers. As the environment in the bus could affect sleep, we examined whether sleep testing in the Mobile Sleep Lab was as feasible as in a conventional sleep laboratory (Human Sleep Lab).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!