Fluorescence microscopy can be used to assess the dynamic localization and intensity of single entities in vitro or in living cells. It has been applied with aplomb to many different cellular processes and has significantly enlightened our understanding of the heterogeneity and complexity of biological systems. Recently, high-resolution fluorescence microscopy has been brought to bear on telomeres, leading to new insights into telomere spatial organization and accessibility, and into the mechanistic nuances of telomere elongation. We provide a snapshot of some of these recent advances with a focus on mammalian systems, and show how three-dimensional, time-lapse microscopy and single-molecule fluorescence shine a new light on the end of the chromosome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754026 | PMC |
http://dx.doi.org/10.12688/f1000research.6664.1 | DOI Listing |
Mod Pathol
January 2025
Bielefeld University, Medical School and University Medical Center OWL, Lung Cancer Center Lippe, Department of Pathology, Klinikum Lippe Detmold, 32756 Detmold, Germany. Electronic address:
Intraoperative consultation is frequently used during the surgical treatment of lung tumors for the diagnosis of malignancy and the assessment of surgical margins. The latter is often problematic given the nature of the applied staple lines, which cannot be readily examined in frozen sections. Seventy-nine samples of surgical margins (71 staple lines and 8 open margins) from 52 lung specimens were examined using an ex vivo fluorescence confocal microscope (FCM).
View Article and Find Full Text PDFOcul Surf
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:
Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.
Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.
Int Immunopharmacol
January 2025
Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China. Electronic address:
Background: Ulcerative colitis (UC) is a persistent chronic, non-specific inflammatory disease, and macrophages play a crucial role in its pathogenesis. Spleen tyrosine kinase (Syk) is strongly associated with the pathogenesis of several inflammatory diseases. However, the role of Syk in the pathogenesis of UC is still obscure.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Gill Institute for Neuroscience, Program in Neuroscience, Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405, USA. Electronic address:
Microscopic cell segmentation typically requires complex imaging, staining, and computational steps to achieve acceptable consistency. Here, we describe a protocol for the high-fidelity segmentation of the nucleus and cytoplasm in cell culture and apply it to monitor interferon-induced signal transducer and activator of transcription (STAT) signaling. We provide guidelines for sample preparation, image acquisition, and segmentation.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.
Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!