Therapeutic cancer vaccines based on the abnormal glycans expressed on cancer cells, such as the globo H antigen, have witnessed great progress in recent years. For example, the keyhole limpet hemocyanin (KLH) conjugate of globo H has been on clinical trials as a cancer vaccine. However, such vaccines have intrinsic problems, such as inconsistence in eliciting T cell-mediated immunity in cancer patients and difficult quality control. To address the issue, a structurally defined fully synthetic glycoconjugate vaccine composed of globo H and monophosphoryl lipid A (MPLA) was developed. The new vaccine was shown to elicit robust IgG1 antibody responses and T cell-dependent immunity, which is desired for anticancer vaccine, and induce significantly faster and stronger immune responses than the globo H-KLH conjugate. Moreover, it was self-adjuvanting, namely, inducing immune responses without the use of an external adjuvant, thus MPLA was not only a vaccine carrier but also a build-in adjuvant. It was also found that antibodies induced by the new vaccine could selectively bind to and mediate strong complement-dependent cytotoxicity to globo H-expressing MCF-7 cancer cell. All of the results have demonstrated that the globo H-MPLA conjugate is a better cancer vaccine than the globo H-KLH conjugate under experimental conditions and is worth further investigation and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762603PMC
http://dx.doi.org/10.1039/C5SC01402FDOI Listing

Publication Analysis

Top Keywords

fully synthetic
8
globo
8
vaccine
8
cancer vaccine
8
immune responses
8
globo h-klh
8
h-klh conjugate
8
cancer
6
synthetic self-adjuvanting
4
self-adjuvanting globo
4

Similar Publications

This work aimed to investigate the adsorption of organic compounds (4-nitroaniline and 4-chlorophenoxyacetic acid) on activated carbon in the presence of selected dyes (uranine and Acid Red 88) and surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide). The adsorbent, i.e.

View Article and Find Full Text PDF

Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals.

Biotechnol Adv

January 2025

Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China. Electronic address:

Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO as the sole carbon source, with H serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals.

View Article and Find Full Text PDF

Resilience and Response of Anaerobic Digestion Systems to Short-term Hydraulic Loading Shocks: Focusing on Total and Active Microbial Community Dynamics.

Environ Res

January 2025

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia.

Anaerobic digestion is known to be sensitive to operational changes, such as hydraulic loading shock, yet the impact on the microbiome, particularly the active RNA-based community, has not been fully understood. This study aimed to investigate the performance of anaerobic reactors and their microbial communities under short-term hydraulic loading shocks. Using synthetic wastewater, the reactor was subjected to 24-hour shocks at three-fold and seven-fold the baseline loading rate, followed by DNA and RNA analyses to assess the system's resiliency and microbial responses.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) can catalyze the asymmetric sulfoxidation to form pharmaceutical prazoles in environmentally friendly approach. In this work, the thermostable BVMO named PockeMO had high sulfoxidation activity towards rabeprazole sulfide to form (R)-rabeprazole but demonstrated significant overoxidation activity to form undesired sulfone by-product. To address this issue, the enzyme was engineered based on the computer assisted comparison for the substrate binding conformations.

View Article and Find Full Text PDF

Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!