Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerical laboratory data at admission have been proposed for enhancement of inpatient predictive modeling from administrative claims. In this study, predictive models for inpatient/30-day postdischarge mortality and for risk-adjusted prolonged length of stay, as a surrogate for severe inpatient complications of care, were designed with administrative data only and with administrative data plus numerical laboratory variables. A comparison of resulting inpatient models for acute myocardial infarction, congestive heart failure, coronary artery bypass grafting, and percutaneous cardiac interventions demonstrated improved discrimination and calibration with administrative data plus laboratory values compared to administrative data only for both mortality and prolonged length of stay. Improved goodness of fit was most apparent in acute myocardial infarction and percutaneous cardiac intervention. The emergence of electronic medical records should make the addition of laboratory variables to administrative data an efficient and practical method to clinically enhance predictive modeling of inpatient outcomes of care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1062860616629205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!