Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861494PMC
http://dx.doi.org/10.1074/jbc.M116.722066DOI Listing

Publication Analysis

Top Keywords

skint-1
9
putative receptor
8
receptor binding
8
binding surface
8
dendritic epidermal
8
thymic epithelial
8
epithelial cells
8
detc selection
8
cdr3-like loop
8
skint family
8

Similar Publications

Role of Dendritic Epidermal T Cells in Cutaneous Carcinoma.

Front Immunol

April 2021

Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China.

Dendritic epidermal T cells (DETCs) are γδ T cells expressing invariant Vγ5Vδ1 T cell receptor (TCR) in murine epidermis. Initially, the development and the maturation of DETC progenitors are mediated by skint-1, TCR, and cytokines in the fetal thymus. Then, the DETC progenitors migrate to the epidermis with the guidance of selectins, CCR10, CCR4, .

View Article and Find Full Text PDF

New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity.

Front Immunol

July 2018

INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France.

Recent findings in the immunology field have pointed out the emergent role of butyrophilins/butyrophilin-like molecules (BTN/BTNL in human, Btn/Btnl in mouse) in the modulation of γδ T cells. As long as the field develops exponentially, new relationships between certain γδ T cell subsets, on one hand, and their BTN/BTNL counterparts mainly present on epithelial and tumor cells, on the other, are described in the scientific literature. Btnl1/Btnl6 in mice and BTNL3/BTNL8 in humans regulate the homing and maturation of Vγ7+ and Vγ4+ T cells to the gut epithelium.

View Article and Find Full Text PDF

A study describing the (1)H, (13)C and (15)N backbone and side chain chemical shift assignments and secondary structure of Skint-1 a prototypic member of a family of mouse genes, of which Skint-1 is involved in the development of the dendritic epidermal T cell (DETC) subset of γδ T cells.

View Article and Find Full Text PDF

Characterization of a Putative Receptor Binding Surface on Skint-1, a Critical Determinant of Dendritic Epidermal T Cell Selection.

J Biol Chem

April 2016

From the Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT,

Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells.

View Article and Find Full Text PDF

PLZF Controls the Development of Fetal-Derived IL-17+Vγ6+ γδ T Cells.

J Immunol

November 2015

Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

Expression of promyelocytic leukemia zinc finger (PLZF) protein directs the effector differentiation of invariant NKT (iNKT) cells and IL-4(+) γδ NKT cells. In this study, we show that PLZF is also required for the development and function of IL-17(+) γδ T cells. We observed that PLZF is expressed in fetal-derived invariant Vγ5(+) and Vγ6(+) γδ T cells, which secrete IFN-γ and IL-17, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!