Calibrating the X-ray attenuation of liquid water and correcting sample movement artefacts during in operando synchrotron X-ray radiographic imaging of polymer electrolyte membrane fuel cells.

J Synchrotron Radiat

Thermofluids for Energy and Advanced Materials Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.

Published: March 2016

Synchrotron X-ray radiography, due to its high temporal and spatial resolutions, provides a valuable means for understanding the in operando water transport behaviour in polymer electrolyte membrane fuel cells. The purpose of this study is to address the specific artefact of imaging sample movement, which poses a significant challenge to synchrotron-based imaging for fuel cell diagnostics. Specifically, the impact of the micrometer-scale movement of the sample was determined, and a correction methodology was developed. At a photon energy level of 20 keV, a maximum movement of 7.5 µm resulted in a false water thickness of 0.93 cm (9% higher than the maximum amount of water that the experimental apparatus could physically contain). This artefact was corrected by image translations based on the relationship between the false water thickness value and the distance moved by the sample. The implementation of this correction method led to a significant reduction in false water thickness (to ∼0.04 cm). Furthermore, to account for inaccuracies in pixel intensities due to the scattering effect and higher harmonics, a calibration technique was introduced for the liquid water X-ray attenuation coefficient, which was found to be 0.657 ± 0.023 cm(-1) at 20 keV. The work presented in this paper provides valuable tools for artefact compensation and accuracy improvements for dynamic synchrotron X-ray imaging of fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S1600577515023899DOI Listing

Publication Analysis

Top Keywords

synchrotron x-ray
12
fuel cells
12
false water
12
water thickness
12
x-ray attenuation
8
liquid water
8
sample movement
8
polymer electrolyte
8
electrolyte membrane
8
membrane fuel
8

Similar Publications

Heterogeneous dynamics in aging phosphate-based geopolymer.

J Chem Phys

January 2025

Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic.

The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Eisai, Cambridge, MA, USA.

Background: E2814 is a humanized monoclonal antibody that recognizes the microtubule-binding region (MTBR) of tau, a region of the protein essential for filament formation and propagation in neurodegenerative diseases. Epitope mapping showed that E2814 binds to a specific sequence motif HVPGG in the MTBR. To elucidate the atomic interactions of E2814-tau binding, we performed X-ray crystallography studies with E2814 and various tau peptides containing the HVPGG motif.

View Article and Find Full Text PDF

Millerettidae are a group of superficially lizard-like Permian stem reptiles originally hypothesized as relevant to the ancestry of the reptile crown group, and particularly to lepidosaurs and archosaurs. Since the advent of cladistics, millerettids have typically been considered to be more distant relatives of crown reptiles as the earliest-diverging parareptiles and therefore outside of 'Eureptilia'. Despite this cladistic consensus, some conspicuous features of millerettid anatomy invite reconsideration of their relationships.

View Article and Find Full Text PDF

The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!