In cartilage regenerative medicine, autologous chondrocyte implantation (ACI) has been applied clinically for partial defects of joint cartilage or nasal augmentation. To make treatment with ACI more effective and prevalent, modalities to evaluate the quality of transplanted constructs noninvasively are necessary. In this study, we compared the efficacy of several noninvasive modalities for evaluating the maturation of tissue-engineered auricular cartilage containing a biodegradable polymer scaffold. We first transplanted tissue-engineered cartilage consisting of human auricular chondrocytes, atelocollagen gel, and a poly-l-lactic acid (PLLA) porous scaffold subcutaneously into the back of athymic nude rats. Eight weeks after transplantation, the rats were examined by magnetic resonance imaging (MRI), X-ray, and ultrasound as noninvasive modalities. Then, the excised constructs were examined by histological and biochemical analysis including toluidine blue (TB) staining, glycosaminoglycans content, and enzyme-linked immunosorbent assay of type II collagen. Among the modalities examined, transverse relaxation time (T2) and apparent diffusion coefficient of MRI showed quite a high correlation with histological and biochemical results, suggesting that these can effectively detect the maturation of tissue-engineered auricular cartilage. Since these noninvasive modalities would realize time-course analysis of the maturation of tissue-engineered auricular cartilage, this study provides a substantial insight for improving the quality of tissue-engineered cartilage, leading to improvement of the quality and technique in cartilage regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2015.0291 | DOI Listing |
Bioengineering (Basel)
December 2024
Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal.
View Article and Find Full Text PDFBiofabrication
January 2025
Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.
View Article and Find Full Text PDFAdv Ther (Weinh)
June 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mannheim, University of Heidelberg, Germany.
The gold standard of auricular reconstruction involves manual graft assembly from autologous costal cartilage. The intervention may require multiple surgical procedures and lead to donor-site morbidity, while the outcome is highly dependent on individual surgical skills. A tissue engineering approach provides the means to produce cartilage grafts of a defined shape from autologous chondrocytes.
View Article and Find Full Text PDFTissue Eng Part A
November 2024
Department of Molecular Pharmaceutics, Health Sciences, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
Osteoarthritis, a degenerative disease of articular cartilage and the leading cause of disability, is preceded by acute cartilage injury in a significant proportion of cases. Current auto- and allograft interventions are limited by supply and variability in therapeutic efficacy, prompting interest in tissue engineering solutions. Cell sheet tissue engineering, a scaffold-free regenerative technique, has shown promise in preclinical and clinical trials across various cell types and diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!