Gymnema sylvestre is traditionally used for diabetes mellitus. A literature survey revealed very few reports, particularly on rat liver microsomal stability, caco-2 permeability and efflux concerns and its correlation with the bioavailability of gymnemagenin, an important component of G. sylvestre. Therefore, the objective of our study was to investigate the in vitro rat liver microsomal stability and caco-2 permeability along with the efflux of gymnemagenin and establish a probable correlation of these in vitro findings with pharmacokinetic parameters after oral and intravenous administration in rats.Rat liver microsomal stability studies to estimate the in vitro intrinsic half-life, clearance, and Caco-2 permeability after 21 days of culture to determine the apparent permeability from apical to basal and from basal to apical, and efflux ratio of gymnemagenin were performed using liquid chromatography-tandem mass spectrometry. A sensitive, robust bioanalytical method was validated and successfully applied to determine the plasma exposure of gymnemagenin. In vitro rat liver microsomal stability demonstrated that gymnemagenin metabolizes rapidly with a short apparent and intrinsic half-life (~ 7 min) and high intrinsic clearance, i.e., 190.08 µL/min/mg of microsomes. The results of the Caco-2 study indicated a poor permeability (1.31 × 10(- 6 )cm/sec) with a very high efflux ratio. The pharmacokinetic study revealed poor oral bioavailability (~ 14 %) of gymnemagenin and it was found to have a short half-life and a high clearance in rats. Our in vitro findings indicated low metabolic stability and poor Caco-2 permeability with high efflux, which might have a role in the observed poor oral bioavailability in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0042-101032 | DOI Listing |
J Pharm Sci
January 2025
Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan.
Acyl glucuronide (AG) is a reactive metabolite that causes idiosyncratic drug toxicity (IDT). Although the instability of AG is used to predict the IDT risk of novel drug candidates, it sometimes overestimates the IDT risk. We investigated whether the rate of enzymatic AG hydrolysis in human liver microsomes (HLM) can predict the risk of IDT.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.
Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).
View Article and Find Full Text PDFJ Med Chem
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
Pulmonary inflammation is the main cause of lung injury. Phosphodiesterase 4 (PDE4) is a promising anti-inflammatory target for the treatment of respiratory diseases. Herein, we designed and synthesized 43 compounds in two novel series of benzimidazole derivatives as PDE4 inhibitors.
View Article and Find Full Text PDFFront Pharmacol
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.
Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.
Food Chem (Oxf)
June 2025
National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS 38677, United States.
Cinnamon is one of the oldest known spices used in various food delicacies and herbal formulations. Cinnamaldehyde is a primary active constituent of cinnamon and substantially contributes to the food additive and medicinal properties of cinnamon. This report deals with cinnamaldehyde bioaccessibility, metabolic clearance, and interaction with human xenobiotic receptors (PXR and AhR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!