The present study investigated the anticancer activity of 2,3-dihydroxy-9,10-anthraquinone against different cancer cells such as MCF-7, COLO320, HepG-2, Skov-3, MOLM-14, NB-4, CEM, K562, Jurkat, HL-60, U937, IM-9 and Vero. 2,3-dihydroxy-9,10-anthraquinone showed good antiproliferative activity against COLO320 cells when compared to other tested cells. The cytotoxicity results showed 79.8% activity at the dose of 2.07 μM with IC50 value of 0.13 μM at 24 h in COLO320 cells. So we chose COLO320 cells for further anticancer studies. mRNA expression was confirmed by qPCR analysis using SYBR green method. Treatment with 2,3-dihydroxy-9,10-anthraquinone was found to trigger intrinsic apoptotic pathway as indicated by down regulation of Bcl-2, Bcl-xl; up regulation of Bim, Bax, Bad; release of cytochrome c and pro-caspases cleaving to caspases. Furthermore, 2,3-dihydroxy-9,10-anthraquinone stopped at G0/G1 phase with modulation in protein levels of cyclins. On the other hand PI3K/AKT signaling plays an important role in cell metabolism. We found that 2,3-dihydroxy-9,10-anthraquinone inhibits PI3K/AKT activity after treatment. Also, COX-2 enzyme plays a major role in colorectal cancer. Our results showed that the treatment significantly reduced COX-2 enzyme in COLO320 cells. These results indicated antiproliferative activity of 2,3-dihydroxy-9,10-anthraquinone involving apoptotic pathways, mitochondrial functions, cell cycle checkpoint and controlling the over expression genes during the colorectal cancer. Molecular docking studies showed that the compound bound stably to the active sites of Bcl-2, COX-2, PI3K and AKT. This is the first report of anticancer mechanism involving 2,3-dihydroxy-9,10-anthraquinone in COLO320 cells. The present results might provide helpful suggestions for the design of antitumor drugs toward colorectal cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2016.02.016 | DOI Listing |
ACS Omega
November 2024
MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
Molecules
September 2024
Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported.
View Article and Find Full Text PDFMol Clin Oncol
September 2024
SCI Research Institute, Jericho, NY 11753, USA.
Colorectal cancer is a life-threatening and prevalent type of cancer. However, a number of current treatments have serious side effects, which increase the need for alternatives. Non-steroidal anti-inflammatory drugs have potential chemopreventive capabilities.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany.
FOLFOXIRI chemotherapy is a first-line therapy for advanced or metastatic colorectal cancer (CRC), yet its therapeutic efficacy remains limited. Immunostimulatory therapies like oncolytic viruses can complement chemotherapies by fostering the infiltration of the tumor by immune cells and enhancing drug cytotoxicity. In this study, we explored the effect of combining the FOLFOXIRI chemotherapeutic agents with the oncolytic coxsackievirus B3 (CVB3) PD-H in the CRC cell line Colo320.
View Article and Find Full Text PDFBiol Proced Online
April 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
Background: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!