Miniaturization of domains to the nanometer scale has been previously reported in many piezoelectrics with two-phase coexistence. Despite the observation of nanoscale domain configuration near the polymorphic phase transition (PPT) regionin virgin (K0.5Na0.5)NbO3 (KNN) based ceramics, it remains unclear how this domain state responds to external loads and influences the macroscopic electro-mechanical properties. To this end, the electric-field-induced and stress-induced strain curves of KNN-based ceramics over a wide compositional range across PPT were characterized. It was found that the coercive field of the virgin samples was highest in PPT region, which was related to the inhibited domain wall motion due to the presence of nanodomains. However, the coercive field was found to be the lowest in the PPT region after electrical poling. This was related to the irreversible transformation of the nanodomains into micron-sized domains during the poling process. With the similar micron-sized domain configuration for all poled ceramics, the domains in the PPT region move more easily due to the additional polarization vectors. The results demonstrate that the poling process can give rise to the irreversible domain configuration transformation and then account for the inverted macroscopic piezoelectricity in the PPT region of KNN-based ceramics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768104 | PMC |
http://dx.doi.org/10.1038/srep22053 | DOI Listing |
Sensors (Basel)
January 2025
Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
The growing importance of state assessments in civil engineering has led to intensive research into the development of damage identification methods based on vibrations. Natural frequencies and modal shapes have garnered great interest because modal parameters are invariant of structure. Moreover, thanks to the global nature of modal parameters, their variations are not limited to the location of the damage.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Maternal Infant and Urologic Sciences, "Sapienza" University of Rome, 00185 Rome, Italy.
: Robot-assisted radical prostatectomy (RARP) for the treatment of prostate cancer (PCa) has been standardized over the last 20 years. At our institution, only n = 3 rob arms are used for RARP. In addition, n = 2, 12 mm lap trocars are placed for the bedside assistant symmetrically at the midclavicular lines, which allows for direct pelvic triangulation and greater involvement of the assisting surgeon.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
ORF2p (open reading frame 2 protein) is a multifunctional multidomain enzyme that demonstrates both reverse transcriptase and endonuclease activities and is associated with the pathophysiology of cancer. The 3D structure of the entire seven-domain ORF2p complex was revealed with the recent achievements in structural studies. The different arrangements of the CTD (carboxy-terminal domain) and tower domains were identified as the "closed-ring" and "open-ring" conformations, which differed by the hairpin position of the tower domain, but the structural diversity of these complexes has the potential to be more extensive.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.
Combining physics with computational models is increasingly recognized for enhancing the performance and energy efficiency in neural networks. Physical reservoir computing uses material dynamics of physical substrates for temporal data processing. Despite the ease of training, building an efficient reservoir remains challenging.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Institute for Entrepreneurship, Technology Management and Innovation (EnTechnon), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Background: Digital health technology (DHT) has the potential to revolutionize the health care industry by reducing costs and improving the quality of care in a sector that faces significant challenges. However, the health care industry is complex, involving numerous stakeholders, and subject to extensive regulation. Within the European Union, medical device regulations impose stringent requirements on various ventures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!