Effect of diesel exhaust inhalation on blood markers of inflammation and neurotoxicity: a controlled, blinded crossover study.

Inhal Toxicol

a Department of Medicine , Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver , BC , Canada .

Published: December 2016

Context: Epidemiological studies and animal research have suggested that air pollution may negatively impact the central nervous system (CNS). Controlled human exposure studies of the effect of air pollution on the brain have potential to enhance our understanding of this relationship and to inform potential biological mechanisms.

Objectives: Biomarkers of systemic and CNS inflammation may address whether air pollution exposure induces inflammation, with potential for CNS negative effects.

Materials And Methods: Twenty-seven healthy adults were exposed to two conditions: filtered air (FA) and diesel exhaust (DE) (300 μg PM2.5/m(3)) for 120 min, in a double-blinded crossover study with exposures separated by four weeks. Prior to and at 0, 3, and 24 h following each exposure, serum and plasma were collected and analyzed for inflammatory cytokines interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α), the astrocytic protein S100b, the neuronal cytoplasmic enzyme neuron-specific enolase (NSE), and serum brain-derived neurotrophic factor (BDNF). We hypothesized that IL-6, TNF-α, S100b and NSE would increase, and BDNF would decrease, following DE exposure.

Results: At no time-point following exposure to DE was a significant increase in concentration from baseline seen for IL-6, TNF-α, S100b, or NSE relative to FA exposure. Similarly, no significant decrease in BDNF concentration from baseline was seen following DE exposure, relative to FA. Furthermore, the repeated measures ANOVA considered for all time-points and biomarkers revealed no significant time-exposure interaction.

Discussion And Conclusion: These results suggest that short-term exposure to DE amongst healthy adults does not acutely affect the systemic or CNS biomarkers that we measured.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08958378.2016.1145770DOI Listing

Publication Analysis

Top Keywords

air pollution
12
diesel exhaust
8
crossover study
8
systemic cns
8
healthy adults
8
il-6 tnf-α
8
tnf-α s100b
8
s100b nse
8
concentration baseline
8
exposure
7

Similar Publications

Enhancing Droplet Spreading on a Hydrophobic Plant Surface by Surfactant/Cellulose Nanocrystal Complexes.

ACS Nano

January 2025

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern.

View Article and Find Full Text PDF

Atmospheric Deposition of Microplastics in South Central Appalachia in the United States.

ACS EST Air

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Due to the increased prevalence of plastic pollution globally, atmospheric deposition of microplastics (MPs) is a significant issue that needs to be better understood to identify potential consequences for human health. This study is the first to quantify and characterize atmospheric MP deposition in the Eastern United States. Passive sampling was conducted at two locations within the Eastern United States, specifically in remote South Central Appalachia, from March to September 2023.

View Article and Find Full Text PDF

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Background: Air pollution is a significant environmental risk factor for cardiovascular diseases (CVDs), but its impact on African populations is under-researched due to limited air quality data and health studies.

Objectives: The purpose of this study was to synthesize available research on the effects of air pollution on CVDs outcomes in African populations, identify knowledge gaps, and suggest areas for research and policy intervention.

Methods: A systematic search of PubMed was conducted using terms capturing criteria ambient air pollutants (for example particulate matter, nitrogen dioxide, ozone, and sulfur dioxide) and CVDs and countries in Africa.

View Article and Find Full Text PDF

Introduction: Cancer is a leading cause of death in the Americas. Colorectal cancer is the third most common cancer, while stomach cancer is the sixth most common cancer worldwide. Tobacco and alcohol consumption, unhealthy diet, physical inactivity and air pollution are risk factors for these cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!