A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast-forward genetics by radiation hybrids to saturate the locus regulating nuclear-cytoplasmic compatibility in Triticum. | LitMetric

The nuclear-encoded species cytoplasm specific (scs) genes control nuclear-cytoplasmic compatibility in wheat (genus Triticum). Alloplasmic cells, which have nucleus and cytoplasm derived from different species, produce vigorous and vital organisms only when the correct version of scs is present in their nucleus. In this study, bulks of in vivo radiation hybrids segregating for the scs phenotype have been genotyped by sequencing with over 1.9 million markers. The high marker saturation obtained for a critical region of chromosome 1D allowed identification of 3318 reads that mapped in close proximity of the scs. A novel in silico approach was deployed to extend these short reads to sequences of up to 70 Kb in length and identify candidate open reading frames (ORFs). Markers were developed to anchor the short contigs containing ORFs to a radiation hybrid map of 650 individuals with resolution of 288 Kb. The region containing the scs locus was narrowed to a single Bacterial Artificial Chromosome (BAC) contig of Aegilops tauschii. Its sequencing and assembly by nano-mapping allowed rapid identification of a rhomboid gene as the only ORF existing within the refined scs locus. Resequencing of this gene from multiple germplasm sources identified a single nucleotide mutation, which gives rise to a functional amino acid change. Gene expression characterization revealed that an active copy of this rhomboid exists on all homoeologous chromosomes of wheat, and depending on the specific cytoplasm each copy is preferentially expressed. Therefore, a new methodology was applied to unique genetic stocks to rapidly identify a strong candidate gene for the control of nuclear-cytoplasmic compatibility in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067624PMC
http://dx.doi.org/10.1111/pbi.12532DOI Listing

Publication Analysis

Top Keywords

nuclear-cytoplasmic compatibility
12
radiation hybrids
8
control nuclear-cytoplasmic
8
compatibility wheat
8
scs locus
8
scs
6
fast-forward genetics
4
genetics radiation
4
hybrids saturate
4
saturate locus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!