Background: Thyroid hormone (TH) plays a key role in the developing brain, including the cerebellum. TH deficiency induces organizational changes of the cerebellum, causing cerebellar ataxia. However, the mechanisms causing these abnormalities are poorly understood. Various animal models have been used to study the mechanism. Lacking dual oxidase (DUOX) and its maturation factor (DUOXA) are major inducers of congenital hypothyroidism. Thus, this study examined the organizational changes of the cerebellum using knockout mice of the Duoxa gene (Duoxa-/-).

Methods: The morphological, behavioral, and electrophysiological changes were analyzed in wild type (Wt) and Duoxa-deficient (Duoxa-/-) mice from postnatal day (P) 10 to P30. To detect the changes in the expression levels of presynaptic proteins, Western blot analysis was performed.

Results: The proliferation and migration of granule cells was delayed after P15 in Duoxa-/- mice. However, these changes disappeared by P25. Although the cerebellar structure of Duoxa-/- mice was not significantly different from that of Wt mice at P25, motor coordination was impaired. It was also found that the amplitude of paired-pulse facilitation at parallel fiber-Purkinje cell synapses decreased in Duoxa-/- mice, particularly at P15. There were no differences between expression levels of presynaptic proteins regulating neurotransmitter release at P25.

Conclusions: These results indicate that the anatomical catch-up growth of the cerebellum did not normalize its function because of the disturbance of neuronal circuits by the combined effect of hypothyroidism and functional disruption of the DUOX/DUOXA complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860669PMC
http://dx.doi.org/10.1089/thy.2015.0034DOI Listing

Publication Analysis

Top Keywords

duoxa-/- mice
16
lacking dual
8
dual oxidase
8
organizational changes
8
changes cerebellum
8
expression levels
8
levels presynaptic
8
presynaptic proteins
8
mice
7
changes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!