AI Article Synopsis

  • Citrin deficiency (CD) is a genetic disorder linked to mutations in the SLC25A13 gene, leading to nutrient metabolism issues like urea cycle failure and fatty liver.
  • Researchers studied CD by using induced pluripotent stem cells (CD-iPSCs) from CD patients and found that these cells did not properly produce urea and had higher levels of triglycerides and lipids.
  • The study revealed that dysfunctional mitochondrial β-oxidation and altered mitochondrial structures in CD-HLCs contribute to lipid accumulation, and treatment with a specific PPAR-α agonist helped reduce this fat buildup.

Article Abstract

Citrin deficiency (CD) is a recessive genetic disorder caused by mutations in the citrin gene SLC25A13. CD causes various symptoms related to nutrient metabolism such as urea cycle failure, abnormal amino acid levels, and fatty liver. To understand the pathophysiology of CD, the molecular phenotypes were investigated using induced pluripotent stem cells derived from fibroblasts of CD patient (CD-iPSCs). In this study, we demonstrate that aberrant mitochondrial β-oxidation may lead to fatty liver in CD patients. CD-iPSCs normally differentiated into hepatocytes, similar to wild-type iPSCs (WT-iPSCs). However, hepatocytes derived from CD-iPSCs (CD-HLCs) did not exhibit ureogenesis. Cellular triglyceride and lipid granule levels were significantly increased in CD-HLCs compared with WT-HLCs. Peroxisome proliferator-activated receptor-α (PPAR-α) and its target genes which are involved in mitochondrial β-oxidation were downregulated in CD-HLCs, and treatment with a PPAR-α agonist partially reduced the lipid accumulation in CD-HLCs. In addition, the mitochondria in CD-HLCs exhibited abnormal morphologies. Based on these observations, we conclude that the lipid accumulation in CD-HLCs results from dysfunctional mitochondrial β-oxidation and abnormal mitochondrial structure.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2015.0342DOI Listing

Publication Analysis

Top Keywords

mitochondrial β-oxidation
16
lipid accumulation
12
cells derived
8
pluripotent stem
8
stem cells
8
fatty liver
8
accumulation cd-hlcs
8
cd-hlcs
6
malfunction mitochondrial
4
β-oxidation
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!