A novel DNA biosensor integrated with Polypyrrole/streptavidin and Au-PAMAM-CP bionanocomposite probes to detect the rs4839469 locus of the vangl1 gene for dysontogenesis prediction.

Biosens Bioelectron

School of Public Health and Management, Institute of Life Science, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China. Electronic address:

Published: June 2016

The single nucleotide polymorphism (SNP) of the vangl1 gene is highly correlated with Neural Tube Defects (NTDs), a group of severe congenital malformations. It is hindered by the lack of a quantitative detection method. We first propose the use of a DNA biosensor to detect the missense single nucleotide polymorphism (rs4839469 c.346G>A p.Ala116Thr) of the vangl1 gene in this work. Polypyrrole (PPy) and streptavidin were integrated to modify a gold electrode. We took advantage of the PPy's good biocompatibility and excellent conductivity. To further accelerate the electron transfer process at the electrode surface, polyamidoamine dendrimer-encapsulated gold nanoparticles (Au-PAMAM) were used, because Au-PAMAM possess a large number of amino groups to load capture probes (CP). Using the biotin-streptavidin system, the Au-PAMAM-CP bionanocomposite probe, which can detect the target DNA, was conjugated to the electrode surface. Under optimal conditions, the DNA biosensor exhibited a wide linear range of 0.1-100 nM with a low detection limit of 0.033 nM (S/N=3). The results suggest that this approach has the potential to be used in clinical research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.02.025DOI Listing

Publication Analysis

Top Keywords

dna biosensor
12
vangl1 gene
12
au-pamam-cp bionanocomposite
8
single nucleotide
8
nucleotide polymorphism
8
electrode surface
8
novel dna
4
biosensor integrated
4
integrated polypyrrole/streptavidin
4
polypyrrole/streptavidin au-pamam-cp
4

Similar Publications

Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach.

Sensors (Basel)

December 2024

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.

View Article and Find Full Text PDF

Malaria poses a serious global health problem, with half the world population being at risk. Regular screening is crucial for breaking the transmission cycle and combatting the disease spreading. However, current diagnostic tools relying on blood samples face challenges in many malaria-epidemic areas.

View Article and Find Full Text PDF

Liquid biopsy is an efficient diagnostic/prognostic tool for tumor-derived component detection in peripheral circulation and other body fluids. The rapid assessment of liquid biopsy techniques facilitates early cancer diagnosis and prognosis. Early and precise detection of tumor biomarkers provides crucial information about the tumor that guides clinicians towards effective personalized medicine.

View Article and Find Full Text PDF

The WHO has classified Helicobacter pylori as a group 1 carcinogen for stomach cancer since early 1994. However, despite the high prevalence of Helicobacter pylori infection, only about 3% of infected people eventually develop gastric cancer.Biomolecular detections of Helicobacter pylori(HP) were compared using specially modified sensors and fluorine immobilized on a carbon nanotube (HFCNT) electrode, which yielded sensitive results.

View Article and Find Full Text PDF

As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!