van der Waals layered structures, notably the transitional metal dichalcogenides (TMDs) and TMD-based heterostructures, have recently attracted immense interest due to their unique physical properties and potential applications in electronics, optoelectronics, and energy harvesting. Despite the recent progress, it is still a challenge to perform comprehensive characterizations of critical properties of these layered structures, including crystal structures, chemical dynamics, and interlayer coupling, using a single characterization platform. In this study, we successfully developed a multimodal nonlinear optical imaging method to characterize these critical properties of molybdenum disulfide (MoS2) and MoS2-based heterostructures. Our results demonstrate that MoS2 layers exhibit strong four-wave mixing (FWM), sum-frequency generation (SFG), and second-harmonic generation (SHG) nonlinear optical characteristics. We believe this is the first observation of FWM and SFG from TMD layers. All three kinds of optical nonlinearities are sensitive to layer numbers, crystal orientation, and interlayer coupling. The combined and simultaneous SHG/SFG-FWM imaging not only is capable of rapid evaluation of crystal quality and precise determination of odd-even layers but also provides in situ monitoring of the chemical dynamics of thermal oxidation in MoS2 and interlayer coupling in MoS2-graphene heterostructures. This method has the advantages of versatility, high fidelity, easy operation, and fast imaging, enabling comprehensive characterization of van der Waals layered structures for fundamental research and practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b00371DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
12
van der
12
der waals
12
layered structures
12
interlayer coupling
12
multimodal nonlinear
8
optical imaging
8
waals layered
8
critical properties
8
chemical dynamics
8

Similar Publications

In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.

View Article and Find Full Text PDF

Polarization-Independent High-Q Phase Gradient Metasurfaces.

Nano Lett

January 2025

Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light-material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping.

View Article and Find Full Text PDF

Fabrication of Dual-Functional MXene@NiCoS Composites with Enhanced Nonlinear Optical and Electrochemical Properties.

Small

January 2025

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.

View Article and Find Full Text PDF

The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!