It is known that the rolB gene of Agrobacterium rhizogenes increases the production of secondary metabolites in transformed plant cells, but its mechanism of action remains unclear. In this report, we demonstrate that rolB expression in Arabidopsis thaliana calli led to the activation of most genes encoding secondary metabolism-specific MYB and bHLH transcription factors (TFs), such as MYB11, MYB12, MYB28, MYB76, MYB34, MYB51, MYB122, TT2 and TT8. Accordingly, a higher transcript abundance of main biosynthetic genes related to these factors was detected. The rolB-transformed calli produced 3-fold higher levels of indolic glucosinolates (GSs) compared with normal calli but did not produce secondary metabolites from other groups. Enhanced accumulation of indolic GSs was caused by activation of MYB34, MYB51 and MYB122, and the absence of aliphatic GSs in transformed calli was caused by the inability of rolB to induce MYB29. The inability of rolB-calli to produce flavonoids was caused by the lack of MYB111 expression, induced by the rolB-mediated conversion of MYB expression from cotyledon-specific to root-specific patterns. The high specificity of rolB on secondary metabolism-specific TFs was demonstrated for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2016.02.015DOI Listing

Publication Analysis

Top Keywords

rolb gene
8
activation genes
8
genes encoding
8
myb bhlh
8
bhlh transcription
8
transcription factors
8
secondary metabolites
8
secondary metabolism-specific
8
myb34 myb51
8
myb51 myb122
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!