The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone.

Eur J Transl Myol

(1) Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University, West Lafayette, IN, USA; (2) Anatomy Dept., Southern Illinois University School of Medicine, Carbondale, IL, USA.

Published: September 2014

Skeletal muscle (SKM) atrophy is a potentially debilitating condition induced by muscle disuse, denervation, many disease states, and aging. The ubiquitin proteasome pathway (UPP) contributes greatly to the protein loss suffered in muscle atrophy. The MERG1a K(+) channel is known to induce UPP activity and atrophy in SKM. It has been further demonstrated that the mouse ether-a-gogo-related gene (Merg)1a channel modulates expression of MURF1, an E3 ligase component of the UPP, while it does not affect expression of the UPP E3 ligase Mafbx/ATROGIN1. Because the UBR2 E3 ligase is known to participate in SKM atrophy, we have investigated the effect of Merg1a expression and hind limb suspension on Ubr2 expression. Here, we report that hind limb suspension results in a significant 25.6% decrease in mouse gastrocnemius muscle fiber cross sectional area (CSA) and that electro-transfer of Merg1a alone into gastrocnemius muscles yields a 15.3% decrease in CSA after 7 days. More interestingly, we discovered that hind limb suspension caused a significant 8-fold increase in Merg1a expression and a significant 4.7-fold increase in Ubr2 transcript after 4 days, while electro-transfer of Merg1a into gastrocnemius muscles resulted in a significant 6.2-fold increase in Merg1a transcript after 4 days but had no effect on Ubr2 expression. In summary, the MERG1a K(+) channel, known to induce atrophy and MURF1 E3 ligase expression, does not affect UBR2 E3 ligase transcript levels. Therefore, to date, the MERG1a channel's contribution to UPP activity appears mainly to be through up-regulation of Murf1 gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163950PMC
http://dx.doi.org/10.4081/ejtm.2014.3319DOI Listing

Publication Analysis

Top Keywords

hind limb
16
limb suspension
16
merg1a expression
12
merg1a channel
12
merg1a
10
expression
9
skeletal muscle
8
skm atrophy
8
channel induce
8
upp activity
8

Similar Publications

This study investigates the effects of electrical stimulation (EMS) combined with strength training on lower limb muscle activation and badminton jump performance, specifically during the "jump smash" movement. A total of 25 male badminton players, with a minimum of three years of professional training experience and no history of lower limb injuries, participated in the study. Participants underwent three distinct conditions: baseline testing, strength training, and EMS combined with strength training.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.

Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.

View Article and Find Full Text PDF

Non-Intrusive Monitoring of Vital Signs in the Lower Limbs Using Optical Sensors.

Sensors (Basel)

January 2025

Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.

Invisible health monitoring is currently a topic of global interest within the scientific community. Sensorization of everyday objects can provide valuable health information without requiring any changes in people's routines. In this work, a feasibility study of photoplethysmography (PPG) acquisition in the lower limbs for continuous and real-time monitoring of the vital signs, including heart rate (HR) and respiratory rate (RR), is presented.

View Article and Find Full Text PDF

: Medial arterial calcification (MAC), a distinct form of vascular pathology frequently coexisting with peripheral arterial disease (PAD), poses unique challenges in limb salvage among patients with diabetes, chronic kidney disease, and end-stage renal disease. This study examines the incidence of MAC and its impact on limb salvage outcomes over a decade of experience at a tertiary limb salvage center. : A retrospective review of all complex lower extremity (LE) reconstructions using local flap (LF) or free tissue transfer (FTT), performed from July 2011 to September 2022, was conducted.

View Article and Find Full Text PDF

The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!