We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753331PMC
http://dx.doi.org/10.3389/fpls.2016.00028DOI Listing

Publication Analysis

Top Keywords

chromatin ring
12
ring formation
12
plant centromeres
8
formation chromatin
8
plant species
8
species tissues
8
interphase nuclei
8
chromatin
6
formation
5
centromeres
5

Similar Publications

CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective.

Cells

January 2025

Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins.

View Article and Find Full Text PDF

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

The naphthoquinone moiety is commonly found in numerous natural cytotoxic compounds with diverse and pleiotropic modes of action (MOAs). The moiety can exist as a standalone pharmacophore or combined with other pharmacophores to enrich their MOAs. Here, we report that the synthetic fusion of naphthoquinones and oxazepines provides potent cytotoxic compounds with diverse MOAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!