Objective: Develop and evaluate an automated identification and predictive risk report for hospitalized heart failure (HF) patients.

Methods: Dictated free-text reports from the previous 24 h were analyzed each day with natural language processing (NLP), to help improve the early identification of hospitalized patients with HF. A second application that uses an Intermountain Healthcare-developed predictive score to determine each HF patient's risk for 30-day hospital readmission and 30-day mortality was also developed. That information was included in an identification and predictive risk report, which was evaluated at a 354-bed hospital that treats high-risk HF patients.

Results: The addition of NLP-identified HF patients increased the identification score's sensitivity from 82.6% to 95.3% and its specificity from 82.7% to 97.5%, and the model's positive predictive value is 97.45%. Daily multidisciplinary discharge planning meetings are now based on the information provided by the HF identification and predictive report, and clinician's review of potential HF admissions takes less time compared to the previously used manual methodology (10 vs 40 min). An evaluation of the use of the HF predictive report identified a significant reduction in 30-day mortality and a significant increase in patient discharges to home care instead of to a specialized nursing facility.

Conclusions: Using clinical decision support to help identify HF patients and automatically calculating their 30-day all-cause readmission and 30-day mortality risks, coupled with a multidisciplinary care process pathway, was found to be an effective process to improve HF patient identification, significantly reduce 30-day mortality, and significantly increase patient discharges to home care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741012PMC
http://dx.doi.org/10.1093/jamia/ocv197DOI Listing

Publication Analysis

Top Keywords

identification predictive
16
30-day mortality
16
automated identification
8
help identify
8
heart failure
8
predictive risk
8
risk report
8
readmission 30-day
8
predictive report
8
mortality increase
8

Similar Publications

Enhancing Diagnostic Accuracy of Lung Nodules in Chest Computed Tomography Using Artificial Intelligence: Retrospective Analysis.

J Med Internet Res

January 2025

Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.

Background: Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accuracy of AI systems in identifying and measuring lung nodules on chest computed tomography (CT) scans remains unclear, which requires further evaluation.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

Host response to environmental exposures such as pathogens and chemicals can include modifications to the epigenome and transcriptome. Improved signature discovery, including the identification of the agent and timing of exposure, has been enabled by advancements in assaying techniques to detect RNA expression, DNA base modifications, histone modifications, and chromatin accessibility. The interrogation of the epigenome and transcriptome cascade requires analyzing disparate datasets from multiple assay types, often at single-cell resolution, derived from the same biospecimen.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!