AI Article Synopsis

  • Optimal fetal lung growth relies on anion-driven fluid secretion, which is influenced by the fetus's hypercalcemic condition affecting the calcium-sensing receptor (CaSR).
  • The activation of CaSR promotes lung expansion by stimulating the cystic fibrosis transmembrane conductance regulator (CFTR) and increasing fluid secretion through various chloride channels expressed in the fetal lung.
  • The study indicates that the mechanisms of this fluid secretion are species-specific, with implications for fetal lung development and potential long-term effects on postnatal respiratory health if disrupted.

Article Abstract

Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl(-)-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca(2+)-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766410PMC
http://dx.doi.org/10.1038/srep21975DOI Listing

Publication Analysis

Top Keywords

fetal lung
16
human fetal
12
fluid secretion
12
developing human
12
lung
9
extracellular calcium-sensing
8
calcium-sensing receptor
8
lung development
8
human lung
8
expressed developing
8

Similar Publications

The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.

View Article and Find Full Text PDF

Extensive congenital pulmonary airway malformation (CPAM) of the left fetal lung and associated marked dextroposition of the fetal heart were noted at 21 weeks' gestation. The right fetal lung appeared compressed with the cardiomediastinal shift angle measuring approximately 20 degrees. Potential subsequent right pulmonary hypoplasia was considered.

View Article and Find Full Text PDF

This case report describes the difficulty in predicting the outcomes for a fetus affected with both left-sided congenital diaphragmatic hernia and second-trimester pre-viable rupture of membranes. Despite the reserved prognosis at the time of diagnosis, a favourable outcome was obtained. The case highlights the relevance of established prognosticators such as the observed/expected lung/head ratio and also underscores the importance of balanced counselling and providing parents with realistic expectations and appropriate support.

View Article and Find Full Text PDF

Tartrazine finds widespread application in the realms of alimentation, pharmaceuticals, cosmetic formulations, and textile manufacturing. Tartrazine has a negative effect on human health such as hyperactivity, allergies and asthma in children. Substances such as tartrazine might effect the embryo in a kind of aspects, containing physical or mental disorders, and a decrease in the child's intellectual memory.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!