Validation is a documented process that provides a high degree of assurance. The computer system does exactly and consistently what it is designed to do in a controlled manner throughout the life. The validation process begins with the system proposal/requirements definition, and continues application and maintenance until system retirement and retention of the e-records based on regulatory rules. The objective to do so is to clearly specify that each application of information technology fulfills its purpose. The computer system validation (CSV) is essential in clinical studies according to the GCP standard, meeting product's pre-determined attributes of the specifications, quality, safety and traceability. This paper describes how to perform the validation process and determine relevant stakeholders within an organization in the light of validation SOPs. Although a specific accountability in the implementation of the validation process might be outsourced, the ultimate responsibility of the CSV remains on the shoulder of the business process owner-sponsor. In order to show that the compliance of the system validation has been properly attained, it is essential to set up comprehensive validation procedures and maintain adequate documentations as well as training records. Quality of the system validation should be controlled using both QC and QA means.
Download full-text PDF |
Source |
---|
J Vasc Access
January 2025
College of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Objective: To develop and validate a nomogram model for predicting central venous catheter-related infections (CRI) in patients with maintenance hemodialysis (MHD).
Methods: MHD patients with central venous catheters (CVCs) visiting the outpatient hemodialysis (HD) center of Xuzhou Medical University Affiliated Hospital from January 2020 to December 2023 were retrospectively selected through a HD monitoring system. Patient data were collected, and the patients were divided into training and validation sets in a 7:3 ratio.
Curr Org Synth
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.
Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).
Mol Ther Nucleic Acids
March 2025
Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.
View Article and Find Full Text PDFFront Parasitol
July 2024
Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru.
Neurocysticercosis (NCC) is caused by the invasion of larvae in the central nervous system (CNS) and stands as the predominant cause of epilepsy and other neurological disorders in many developing nations. NCC diagnosis is challenging because it relies on brain imaging exams (CT or MRI), which are poorly available in endemic rural or resource-limited areas. Moreover, some NCC cases cannot be easily detected by imaging, leading to inconclusive results.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INRIA Paris, INSERM U1127, Hôpital de la Pitié Salpêtrière, AP-HP, Paris 75013, France.
The time-resolved analysis of heart rate (HR) and heart rate variability (HRV) is crucial for the evaluation of the dynamic changes of autonomic activity under different clinical and behavioural conditions. Standard HRV analysis is performed in the frequency domain because the sympathetic activations tend to increase low-frequency HRV oscillations, while the parasympathetic ones increase high-frequency HRV oscillations. However, a strict separation of HRV into frequency bands may cause biased estimations, especially in the low-frequency range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!